Keywords: epizootiology, pigs, exudative epidermitis, Staphylococcus hyicus, antibiotic resistance.


There is a range of infections that cause significant economic losses in the industry and lack recognized means of specific prevention, and the epizootic situation concerning them is worsening. Among these bacterial diseases are staphylococcosis, particularly exudative epidermitis in pigs, caused by the bacterium Staphylococcus hyicus. Practical specialists in production often turn to researchers for assistance when outbreaks of skin lesions occur in pigs, and antibiotic therapy proves to be ineffective. Therefore, there is a need to analyze the current state of this problem and existing developments worldwide aimed at its resolution. The objective of our study was to determine the current state of research on the causative agent, analyze the manifestations and issues related to exudative epidermitis in pigs in different countries and over various years, and explore possible approaches to the treatment of affected pigs and the prevention of exudative epidermitis outbreaks in pig farms. The research was conducted through a comparative analysis of our own extensive experience in addressing the issue of exudative epidermitis in pigs with the research conducted by domestic and foreign scientists who investigated the pathology in pigs caused by S. hyicus. The research results encompassed an analysis of contemporary knowledge regarding the pathogenicity (toxigenicity) of the causative agent of exudative epidermitis in pigs, S. hyicus, and the spectrum of its antibiotic resistance in different countries. Disease manifestations were examined, and alternative approaches to the treatment of affected pigs were explored. Researchers from various countries are considering antimicrobial peptides of various origins, essential plant oils, and bacteriophages targeting S. hyicus as potential therapeutic agents for exudative epidermitis in pigs. For the prevention of exudative epidermitis in pigs, the use of an autogenous vaccine is recommended, which also aids in expediting the elimination of disease outbreaks.


1. Aarestrup, F. M., & Jensen, L. B. (2002). Trends in antimicrobial susceptibility in relation to antimicrobial usage and presence of resistance genes in Staphylococcus hyicus isolated from exudative epidermitis in pigs. Veterinary microbiology, 89(1), 83–94. https://doi.org/10.1016/s0378-1135(02)00177-3
2. Aishpur, O.Ie (2013). Porivnialne vyvchennia rezultativ zastosuvannia vaktsyn proty respiratornykh khvorob svynei [Comparative study of the results of the use of vaccines against respiratory diseases of pigs]. Veterynarna biotekhnolohiia [Veterinary biotechnology], 22, 13-15 (in Ukrainian).
3. Andresen L. O. (1998). Differentiation and distribution of three types of exfoliative toxin produced by Staphylococcus hyicus from pigs with exudative epidermitis. FEMS immunology and medical microbiology, 20(4), 301–310. https://doi. org/10.1111/j.1574-695X.1998.tb01140.x
4. Andresen, L. O., Ahrens, P., Daugaard, L., & Bille-Hansen, V. (2005). Exudative epidermitis in pigs caused by toxigenic Staphylococcus chromogenes. Veterinary microbiology, 105(3-4), 291–300. https://doi.org/10.1016/j.vetmic.2004.12.006
5. Arsenakis, I., Boyen, F., Haesebrouck, F., & Maes, D. G. D. (2018). Autogenous vaccination reduces antimicrobial usage and mortality rates in a herd facing severe exudative epidermitis outbreaks in weaned pigs. The Veterinary record, 182(26), 744. https://doi.org/10.1136/vr.104720
6. Brimmers, L., Buch, J., Harlizius, J., Kuczka, A., Kleinmans, M., Ladinig, A., & Kreutzmann, H. (2023). Increased piglet losses upon exudative epidermitis-a case report. Tierarztliche Praxis. Ausgabe G, Grosstiere/nutztiere. https://doi. org/10.1055/a-2088-6163
7. Calcutt, M. J., Foecking, M. F., Hsieh, H. Y., Adkins, P. R., Stewart, G. C., & Middleton, J. R. (2015). Sequence analysis of Staphylococcus hyicus ATCC 11249T, an etiological agent of exudative epidermitis in swine, reveals a type VII secretion system locus and a novel 116-kilobase genomic island harboring toxin-encoding genes. Genome Announcements, 3(1), e01525-14. https://doi.org/10.1128/genomeA.01525-14
8. Casanova, C., Iselin, L., von Steiger, N., Droz, S., & Sendi, P. (2011). Staphylococcus hyicus bacteremia in a farmer. Journal of Clinical Microbiology, 49(12), 4377-4378. https://doi.org/10.1128/JCM.05645-11
9. Chen, S., Wang, Y., Chen, F., Yang, H., Gan, M., & Zheng, S. J. (2007). A highly pathogenic strain of Staphylococcus sciuri caused fatal exudative epidermitis in piglets. PloS one, 2(1), e147. https://doi.org/10.1371/journal.pone. 0000147
10. Devriese, L. A., Hajek, V., Oeding, P., Meyer, S. A., & Schleifer, K. H. (1978). Staphylococcus hyicus (Sompolinsky 1953) comb. nov. and Staphylococcus hyicus subsp. chromogenes subsp. nov. International Journal of Systematic and Evolutionary Microbiology, 28(4), 482-490. https://doi.org/10.1099/00207713-28-4-482
11. EFSA Panel on Animal Health and Welfare (AHAW), Nielsen, S. S., Bicout, D. J., Calistri, P., Canali, E., Drewe, J. A., Garin-Bastuji, B., Gonzales Rojas, J. L., Gortazar Schmidt, C., Herskin, M., Michel, V., Miranda Chueca, M. A., Padalino, B., Pasquali, P., Roberts, H. C., Sihvonen, L. H., Spoolder, H., Stahl, K., Velarde, A., Viltrop, A., … Alvarez, J. (2021). Assessment of animal diseases caused by bacteria resistant to antimicrobials: Swine. EFSA journal. European Food Safety Authority, 19(12), e07113. https://doi.org/10.2903/j.efsa.2021.7113
12. Foissac, M., Lekaditi, M., Loutfi, B., Ehrhart, A., & Dauchy, F. A. (2016). Spondylodiscitis and bacteremia due to Staphylococcus hyicus in an immunocompetent man. Germs, 6(3), 106. 10.11599/germs.2016.1097
13. Foster, A. P. (2012). Staphylococcal skin disease in livestock. Veterinary dermatology, 23(4), 342-51. https://doi. org/10.1111/j.1365-3164.2012.01093.x.
14. Futagawa-Saito, K., Ba-Thein, W., & Fukuyasu, T. (2009). Antimicrobial susceptibilities of exfoliative toxigenic and non-toxigenic Staphylococcus hyicus strains in Japan. Journal of Veterinary Medical Science, 71(5), 681-684. https://doi. org/10.1292/jvms.71.681.
15. González-Martín, M., Corbera, J. A., Suárez-Bonnet, A., & Tejedor-Junco, M. T. (2020). Virulence factors in coagulase- positive staphylococci of veterinary interest other than Staphylococcus aureus. Veterinary Quarterly, 40(1), 118-131. https://doi.org/10.1080/01652176.2020.1748253
16. Gorbatyuk, O. & Garkavenko, Tetiana & Kozytska, Tamara & Ordinska, D. & Musiec, I. & Schur, N. V. (2019). Bakteriolohichnyi monitorynh stafilokokovoi infektsii u svynei, syrovyni i produktsii iz svynyny na terytorii Ukrainy ta biolohichni ryzyky dlia liudyny [Bacteriological monitoring of staphylococcal infection in pigs, raw materials and pork products in the territory of Ukraine and biological risks for humans.]. Scientific and Technical Bulletin оf State Scientific Research Control Institute of Veterinary Medical Products and Fodder Additives аnd Institute of Animal Biology. 20. 194-200. https://doi.org/10.36359/ scivp.2019-20-2.25. (in Ukrainian).
17. Harkavenko, T. O., Horbatiuk, O. I., Kozytskaia, T. H., Andriiashchuk, V. O., Musiets, I. V., Ordynska, D. O., & Karvatko, T. M. (2021). Poshyrennia stafilokokozu sered tvaryn ta ptytsi na terytorii Ukrainy za period 2015–2020 [Spread of staphylococcus among animals and poultry in Ukraine for the period 2015–2020]. Veterynarna biotekhnolohiia [Veterinary biotechnology], (38), 36-46. (in Ukrainian).
18. Hassler, C.h, Nitzsche, S., Iversen, C., Zweifel, C., & Stephan, R. (2008). Characteristics of Staphylococcus hyicus strains isolated from pig carcasses in two different slaughterhouses. Meat science, 80(2), 505–510. https://doi.org/10.1016/j. meatsci.2008.02.001
19. Holmer, I., Salomonsen, C. M., Jorsal, S. E., Astrup, L. B., Jensen, V. F., Høg, B. B., & Pedersen, K. (2019). Antibiotic resistance in porcine pathogenic bacteria and relation to antibiotic usage. BMC Veterinary Research, 15(1), 1-13. https://doi.org/10.1186/s12917-019-2162-8
20. Horiuk, Y. V. (2019). Lytic Activity of Staphylococcal Bacteriophage on Different Biotypes of Staphylococcus aureus. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 21(94), 115-120.
21. Kalai, S., Roychoudhury, P., Dutta, T. K., Subudhi, P. K., Chakraborty, S., Barman, N. N., & Sen, A. (2021). Multidrug resistant staphylococci isolated from pigs with exudative epidermitis in North eastern Region of India. Letters in applied microbiology, 72(5), 535–541. https://doi.org/10.1111/lam.13448
22. Ladhani, S. (2001). Recent developments in staphylococcal scalded skin syndrome. Clinical Microbiology and Infection, 7(6), 301-307. https://doi.org/10.1046/j.1198-743x.2001.00258.x
23. Lavor, U. L., Guimarães, F. F., Salina, A., Mioni, M. S., & Langoni, H. (2019). Bacterial identification, somatic cell count, antimicrobial profile and toxigenic Staphylococcus strains search from mastitic cow milk samples on small farms properties. Pesquisa Veterinária Brasileira, 39, 715-722.
24. Leekitcharoenphon, P., Pamp, S. J., Andresen, L. O., & Aarestrup, F. M. (2016). Comparative genomics of toxigenic and non-toxigenic Staphylococcus hyicus. Veterinary Microbiology, 185, 34-40. https://doi.org/10.1016/j.vetmic. 2016.01.018
25. Li, Y., Gou, H., Chu, P., Zhang, K., Jiang, Z., Cai, R., ... & Li, C. (2021). Comparison of Host Cytokine Response in Piglets Infected With Toxigenic and Non-toxigenic Staphylococcus hyicus. Frontiers in Veterinary Science, 8, 639141. https://doi.org/10.3389/fvets.2021.639141
26. Liu, H., Yang, N., Mao, R., Teng, D., Hao, Y., Wang, X., & Wang, J. (2020). A new high-yielding antimicrobial peptide NZX and its antibacterial activity against Staphylococcus hyicus in vitro/vivo. Applied microbiology and biotechnology, 104(4), 1555–1568. https://doi.org/10.1007/s00253-019-10313-3
27. Liu, H., Yang, N., Teng, D., Mao, R., Hao, Y., Ma, X., & Wang, J. (2021). Design and Pharmacodynamics of Recombinant Fungus Defensin NZL with Improved Activity against Staphylococcus hyicus In Vitro and In Vivo. International journal of molecular sciences, 22(11), 5435. https://doi.org/10.3390/ijms22115435
28. Liu, H., Yang, N., Teng, D., Mao, R., Hao, Y., Ma, X., Wang, X., & Wang, J. (2021). Fatty acid modified-antimicrobial peptide analogues with potent antimicrobial activity and topical therapeutic efficacy against Staphylococcus hyicus. Applied microbiology and biotechnology, 105(14-15), 5845–5859. https://doi.org/10.1007/s00253-021-11454-0
29. Lu, L., He, K., Ni, Y., Yu, Z., & Mao, A. (2017). Exudative epidermitis of piglets caused by non-toxigenic Staphylococcus sciuri. Veterinary microbiology, 199, 79–84. https://doi.org/10.1016/j.vetmic.2016.12.016
30. Ma, X., Yang, N., Mao, R., Hao, Y., Yan, X., Teng, D., & Wang, J. (2021). The Pharmacodynamics Study of Insect Defensin DLP4 Against Toxigenic Staphylococcus hyicus ACCC 61734 in Vitro and Vivo. Frontiers in cellular and infection microbiology, 11, 638598. https://doi.org/10.3389/fcimb.2021.638598
31. Moreno, A. M., Moreno, L. Z., Poor, A. P., Matajira, C. E. C., Moreno, M., Gomes, V. T. M., da Silva, G. F. R., Takeuti, K. L., & Barcellos, D. E. (2022). Antimicrobial Resistance Profile of Staphylococcus hyicus Strains Isolated from Brazilian Swine Herds. Antibiotics (Basel, Switzerland), 11(2), 205. https://doi.org/10.3390/antibiotics11020205
32. Neumann EJ, Ramirez A, Schwartz KJ (2010). "Diseases Caused by Bacteria, Mycoplasmas and Spirochetes". Swine Disease Manual (Fifth ed.). American Association of Swine Veterinarians. pp. 27–28.
33. Nishifuji, K., Sugai, M., & Amagai, M. (2008). Staphylococcal exfoliative toxins:“molecular scissors” of bacteria that attack the cutaneous defense barrier in mammals. Journal of dermatological science, 49(1), 21-31. https://doi.org/10.1016/j. jdermsci.2007.05.007.
34. Park, J., Friendship, R. M., Poljak, Z., Weese, J. S., & Dewey, C. E. (2013). An investigation of exudative epidermitis (greasy pig disease) and antimicrobial resistance patterns of Staphylococcus hyicus and Staphylococcus aureus isolated from clinical cases. The Canadian veterinary journal, 54(2), 139–144.
35. Park, J., Friendship, R. M., Weese, J. S., Poljak, Z., & Dewey, C. E. (2013). An investigation of resistance to β-lactam antimicrobials among staphylococci isolated from pigs with exudative epidermitis. BMC veterinary research, 9(1), 1-8. https://doi.org/10.1186/1746- 6148-9-211
36. Pérez, D. R., Fernández-Llario, P., Velarde, R., Cuesta, J. M., García-Jiménez, W. L., Gonçalves, P., ... & De Mendoza, J. H. (2013). A case of exudative epidermitis in a young wild boar from a Spanish game estate. Journal of Swine Health and Production, 21(6), 304-308.
37. Prévost, G., Couppié, P., & Monteil, H. (2003). Staphylococcal epidermolysins. Current opinion in infectious diseases, 16(2), 71–76. https://doi.org/10.1097/00001432-200304000-00002
38. Ramirez A (2018). "Diseases affecting pigs: an overview of common bacterial, viral and parasiticpathogens of pigs". pp. 3–29. doi:10.19103/AS.2017.0013.14. ISBN 978-1-78676-096-8. URL https://dr.lib.iastate.edu/entities/publication/ bda65255-b641-4f20-a8c6-ddd60dee2743
39. Rebenko H.I. (2016). Topichne vykorystannia bakterialnoho lizatu dlia profilaktyky respiratornykh khvorob porosiat. [Topical use of bacterial lysate for the prevention of respiratory diseases in piglets.] Visnyk SNAU seriia «Vet med» [Bulletin of SNAU, "Vet Med" series], 11 (39), 114-121. (in Ukrainian).
40. Salmanov A.H., Shchehlov D.V., Artomenko V.V., Mamonova M.Iu., Ushkalov V.O. (2022). Strymuvannia antymikrobnoi rezystentnosti na pidkhodakh «Iedyne zdorovia»: Monohrafiia. [Containment of Antimicrobial Resistance Using One Health Approaches: Monograph] K.:AhrarMediaHrup. 380. ISBN 978-617-646-517-1 (in Ukrainian).
41. Schwarz, L., Loncaric, I., Brunthaler, R., Knecht, C., Hennig-Pauka, I., & Ladinig, A. (2021). Exudative Epidermitis in Combination with Staphylococcal Pyoderma in Suckling Piglets. Antibiotics (Basel, Switzerland), 10(7), 840. https://doi. org/10.3390/antibiotics10070840
42. Sever, N. K., & Akan, M. (2020). In vitro antibiotic resistance of Staphylococci isolated from different animal species. Turkish Journal of Veterinary & Animal Sciences, 44(5), 1055-1062. https://doi.org/10.3906/ vet-2004-50
43. Swolana, D., Kępa, M., Kabała-Dzik, A., Dzik, R., & Wojtyczka, R. D. (2021). Sensitivity of Staphylococcal Biofilm to Selected Compounds of Plant Origin. Antibiotics (Basel, Switzerland), 10(5), 607. https://doi.org/10.3390/ antibiotics10050607
44. Takeuti, K. L., Bernardi, M. L., Moreno, A. M., & de Barcellos, D. E. S. N. (2018). Assessment of different storage conditions for Staphylococcus hyicus survival. The Journal of Infection in Developing Countries, 12(07), 514-519. https://doi. org/10.3855/JIDC.9886
45. Tanabe, T., Sato, H., Sato, H., Watanabe, K., Hirano, M., Hirose, K., ... & Maehara, N. (1996). Correlation between occurrence of exudative epidermitis and exfoliative toxin-producing ability of Staphylococcus hyicus. Veterinary Microbiology, 48(1-2), 9-17. https://doi.org/10.1016/0378-1135(95)00144-1 .
46. Tarasov, O, Sapeiko, V, Aishpur, O, Babkina, M, Tereshchenko, S, Zotsenko, I. (2018). Vyvchennia synerhichnoho efektu benzalkoniumu khlorydu na antymikrobnu aktyvnist roslynnykh efirnykh olii [Study of the synergistic effect of benzalkonium chloride on the antimicrobial activity of plant essential oils.]. Veterynarna biotekhnolohiia, [Veterinary biotechnology], 32 (2), 529-536 (in Ukrainian).
47. Tetens, J., Sprotte, S., Thimm, G., Wagner, N., Brinks, E., Neve, H., Hölzel, C. S., & Franz, C. M. A. P. (2021). First Molecular Characterization of Siphoviridae-Like Bacteriophages Infecting Staphylococcus hyicus in a Case of Exudative Epidermitis. Frontiers in microbiology, 12, 653501. https://doi.org/10.3389/fmicb.2021.653501
48. Vaillancourt, K., LeBel, G., Yi, L., & Grenier, D. (2018). In vitro antibacterial activity of plant essential oils against Staphylococcus hyicus and Staphylococcus aureus, the causative agents of exudative epidermitis in pigs. Archives of microbiology, 200(7), 1001–1007. https://doi.org/10.1007/s00203-018-1512-4
49. Vishovan Yu., Ushkalov V.O., Vyhovska L.M. (2019) Poshyrennia mikroorhanizmiv rodu Staphylococcus sered klinichno zdorovykh svynei [Distribution of microorganisms of the genus Staphylococcus among clinically healthy pigs]. Aktualna infektolohiia [Actual Infectology], 7, 5-6. URL: http://www.mif-ua.com/archive/article/48411 (in Ukrainian).
50. Vishovan, Yu., & Ushkalov, V. (2018). Poshyrennia stafilokokiv i zakhvoriuvan, zumovlenykh nymy [Spread of staphylococci and diseases caused by them]. Visnyk ahrarnoi nauky [Herald of Agrarian Science], 96(2), 36-42. (in Ukrainian).
51. Wang, M., Hu, J., Zhu, L., Guo, C., Lu, H., Guo, C., ... & Wang, X. (2017). A fatal suppurative pneumonia in piglets caused by a pathogenic coagulase-positive strain of Staphylococcus hyicus. Veterinary Research Communications, 41, 139-146. https://doi.org/10.1007/s11259-017-9682-0
52. Wegener, H. C., Andresen, L. O., & Bille-Hansen, V. (1993). Staphylococcus hyicus virulence in relation to exudative epidermitis in pigs. Canadian journal of veterinary research, 57(2), 119–125.
53. Zimmerman J. J. (2019). Diseases of swine (Eleventh). John Wiley & Sons. ISBN 978-1- 119-35090-3. OCLC 1051779035.
How to Cite
Ayshpur, O. Y., Rebenko, H. I., & Nazarenko, S. M. (2023). EXUDATIVE EPIDERMATITIS IN PIGS (ETIOLOGY, MANIFESTATIONS OF INFECTION, AND CONTROL MEASURES). Bulletin of Sumy National Agrarian University. The Series: Veterinary Medicine, (3(62), 12-20. https://doi.org/10.32782/bsnau.vet.2023.3.2