FORMATION AND FUNCTIONING OF THE ASSIMILATION APPARATUS OF SOYBEAN LINES ISOGENIC FOR E GENES UNDER DIFFERENT PHOTOPERIOD DURATIONS
Abstract
Soybean (Glycine max (L.) Merr.) is a leading leguminous crop and at the same time a model plant for studying the biological nature of photoperiodism. The study of the role of genotype and photoperiodic reaction of plants in the formation of adaptive strategies for the regulation of assimilation processes is an urgent problem of modern phytophysiology. The paper presents the results of the analysis of the functioning of the assimilation apparatus according to the indicators of assimilation indices and the content of photosynthetic pigments in soybean lines that are isogenic for genes that control photoperiodic reaction under different photoperiod conditions. Near isogenic lines (NILs) for genes that control photoperiodic reaction of soybeans (Glycine max (L.) Merr.) were used as plant material: short-day plants (SDP) – variety Clark and isoline L80-5879 (genotype e1E2E3E4e5E7 and E1e2e3E4e5E7); neutral day plants (NDP) – isolines L63-3117 and L71-920 (genotype e1e2E3E4e5E7 and e1e2e3E4e5E7). From the stage of the third true leaf (V3), one part of the plants was grown under natural conditions (16 hours), and the second part was exposed to a short day (9 hours) for 14 days (phase of the fifth true leaf – V5). In the development phases V3 and V5, the dry weight of leaves and plants, the number and area of leaves were measured, on the basis of which the assimilation indices (LAR, SLA, LWR) were calculated and the content of chlorophylls A and B was analyzed. The results of the experiments showed that the presence of three dominant alleles of genes E2, E3 and E4 determines the shortday reaction of plants of the variety and under the influence of a photoperiod shortened to 9 hours causes a decrease in LAR, mainly due to a significant decrease in SLA and a less significant increase in the level of LWR, as well as a decrease in the content of chlorophylls relative to the level of these indicators according to long photoperiod. The dominant gene E1 caused a greater decrease in the content of chlorophylls A and B, as well as LAR and SLA during a short photoperiod, which can characterize the inhibition of the increase in the linear parameters of the plant and more efficient accumulation of dry mass, which is an important condition for the transition to the generative phase. The combination of dominant alleles of genes E3 and E4 determined a higher level of LAR under the influence of a short photoperiod mainly due to a more significant increase in LWR than a decrease in SLA. At the same time, the content of chlorophyll was not change, compared to a long day. The recessive state of genes е1, е2, е3 caused approximately the same indicators of chlorophyll content and LAR, with a slight difference in SLA and LWR on long and short days, which may indicate a sufficiently high adaptability of the assimilation apparatus of these plants to photoperiodic conditions. It was established that, depending on the allelic state of the photoperiodic sensitivity genes (E-series genes) in the soybean isolines genotype and their photoperiodic response, multidirectional strategies for adapting the assimilation apparatus to conditions of photoperiods of different durations are launched.
References
2. Cober, E. R., Curtis, D. F., Stewart, D. W., & Morrison, M. J. (2014). Quantifying the effects of photoperiod, temperature and daily irradiance on flowering time of soybean isolines. Plants. 3 (4), 476–497. doi: 10.3390/plants3040476.
3. Esteban, R., Barrutia, O., Artetxe, U., Fernández-Marín, B., Hernández, A., & García-Plazaola, J. I. (2014). Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach. New Phytologist, 206(1), 268–280. Portico. doi: 10.1111/nph.13186
4. Golembeski, G. S., Kinmonth-Schultz, H. A., Song, Y. H., & Imaizumi, T. (2014). Photoperiodic flowering regulation in Arabidopsis thaliana. Advances in botanical research, 72, 1–28. doi: 10.1016/B978-0-12-417162-6.00001-8
5. Gupta, S., Kumawat, G., Agrawal, N., Tripathi, R., Rajesh,V., Nataraj, V., et al. (2022). Photoperiod trait: Insight in molecular mechanism for growth and maturity adaptation of soybean (Glycine max) to different latitudes. Plant Breeding, 141(4), 483-500. Doi: 10.1111/pbr.13041
6. Hunt, R. (2017). Growth Analysis, Individual Plants. In B. Thomas, B. G. Murray, & D. J. Murphy (Eds.), Encyclopedia of Applied Plant Sciences, 421–429, Oxford, Academic Press. doi: 10.1016/B978-0-12-394807-6.00226-4 методи
7. Hunt, R., Causton, D. R., Shipley, B., & Askew, A. P. (2002). A modern tool for classical plant growth analysis. Annals of botany, 90(4), 485–488. doi: 10.1093/aob/mcf214
8. Keller, B., Zimmermann, L., Rascher, U., Matsubara, S., Steier, A., & Muller, O. (2022). Toward predicting photosynthetic efficiency and biomass gain in crop genotypes over a field season. Plant Physiol. 188(1), 301-317. doi: 10.1093/plphys/kiab483.
9. Kong, F., Liu, B., Xia, Z., Sato, S, Kim, B. M., Watanabe, S., Yamada, T., Tabata, S., Kanazawa, A., Harada, K., & Abe J. (2010). Two Coordinately Regulated Homologs of FLOWERING LOCUS T Are Involved in the Control of Photoperiodic Flowering in Soybean. Plant Physiol, 154, 1220-1231. Doi: 10.1104/pp.110.160796
10. Kong, F., Nan, H., Cao, D., Li, Y., Wu, F., Wang, J., Lu, S., Yuan, X., Cober, E. R., Abe, J., & Liu, B. (2014). A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Science, 54(6), 2529–2535. Portico. doi: 10.2135/cropsci2014.03.0228
11. Lamont, B. B., Williams, M. R., & He, T. (2023). Relative growth rate (RGR) and other confounded variables: mathematical problems and biological solutions. Annals of Botany, 131(4), 555–568. doi: 10.2135/cropsci2014.03.0228
12. Li, X., Schmid, B., Wang, F., & Paine, C. E. T. (2016). Net assimilation rate determines the growth rates of 14 species of subtropical forest trees. PLOS ONE, 11(3), e0150644. doi: 10.1371/journal.pone.0150644
13. Li, Y., Hou, Z., Li, W., Li, H., Lu, S., Gan, Z., Du, H., Li, T., Zhang, Y., Kong, F., Cheng, Y., He, M., Ma, L., Liao, C., Li, Y., Dong, L., Liu, B., & Cheng, Q. (2021). The legume-specific transcription factor E1 controls leaf morphology in soybean. BMC Plant Biology, 21(1), 531. doi: 10.1186/s12870-021-03301-1
14. Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591–592. doi: 10.1042/bst0110591
15. Liu, L., Xie, Y., Yahaya, B.S., & Wu, F. (2024). GIGANTEA Unveiled: Exploring Its Diverse Roles and Mechanisms. Genes, 15, 94. Doi: 10.3390/genes15010094
16. Liu, P.-C., Peacock, W. J., Wang, L., Furbank, R., Larkum, A., & Dennis, E. S. (2020). Leaf growth in early development is key to biomass heterosis in Arabidopsis. Journal of Experimental Botany, 71(8), 2439–2450. doi: 10.1093/jxb/eraa006
17. Miladinovic J., Ceran M., Đordevic V., Balesevic-Tubic S., Petrovic K., Dukic V., & Miladinovic D. (2018). Allelic variation and distribution of the major maturity genes in different soybean collections. Frontiers in Plant Science. 9: 1286. doi: 10.3389/fpls.2018.01286
18. Osnato, M., Cota, I., Nebhnani, P., Cereijo, U., & Pelaz, S. (2022). Photoperiod control of plant growth: flowering time genes beyond flowering. Frontiers in Plant Science, 12:805635. doi: 10.3389/fpls.2021.805635
19. Pagano, M. C., & Miransari, M. (2016). The importance of soybean production worldwide. In M. Miransari (Ed.), Abiotic and Biotic Stresses in Soybean Production. 1–26. Oxford. Academic Press. doi: 10.1016/B978-0-12-801536-0.00001-3
20. Poorter, H., Anten, N. P. R., & Marcelis, L. F. M. (2013). Physiological mechanisms in plant growth models: do we need a supra-cellular systems biology approach? Plant Cell Environ, 36, 673–1690. doi: 10.1111/pce.12123. обговорення 21. Rani, R., Raza, G., Ashfaq, H., Rizwan, M., Shimelis, H., Tung, M. H., & Arif, M. (2023). Analysis of genotype × environment interactions for agronomic traits of soybean (Glycine max [L.] Merr.) using association mapping. Frontiers in Genetics, 13:1090994. doi: 10.3389/fgene.2022.1090994
22. Sohidul Islam, M., Muhyidiyn, I., Rafiqul Islam, Md., Kamrul Hasan, Md., Golam Hafeez, A., Moaz Hosen, Md., Erman, M. (2022). Soybean and Sustainable Agriculture for Food Security. IntechOpen. doi: 10.5772/intechopen.104129
23. Song, Y. H., Ito, S., & Imaizumi, T. (2013). Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends in plant science, 18(10), 575–583. doi: 10.1016/j.tplants.2013.05.003
24. Taniguchi, T., Murayama, N., Ario, N., Nakagawa, A. C. S., Tanaka, S., Tomoita, Y., Hasegawa, M., Hamaoka, N., Iwaya-Inoue, M., & Ishibashi, Y. (2020). Photoperiod sensing of leaf regulates pod setting in soybean (Glycine max (L.) Merr.). Plant Production Science, 23(3), 360–365. doi: 10.1080/1343943x.2019.1709512
25. Wang, Y., Xu, C., Sun, J., Dong, L., Li, M., Liu, Y., Wang, J., Zhang, X., Li, D., Sun, L., Zhang, Y., Shan, J., Li, W., & Zhao, L. (2021). GmRAV confers ecological adaptation through photoperiod control of flowering time and maturity in soybean. Plant Physiology, 187(1), 361–377. doi: 10.1093/plphys/kiab255
26. Watanabe S., Harada K., Abe J. (2012). Genetic and molecular bases of photoperiod responses of flowering in soybean. Breeding Science. 1(61), 531-543. doi: 10.1270/jsbbs.61.531.
27. Weraduwage, S. M., Chen, J., Anozie, F. C., Morales, A., Weise, S. E., & Sharkey, T. D. (2015). The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana. Frontiers in Plant Science, 6:167 doi: 10.3389/fpls.2015.00167
28. Zhai, H., Wan, Z., Jiao, S., Zhou, J., Xu, K., Nan, H., Liu, Y., Xiong, S., Fan, R., Zhu, J., Jiang, W., Pang, T., Luo, X., Wu, H., Yang, G., Bai, X., Kong, F., & Xia, Z. (2022). GmMDE genes bridge the maturity gene E1 and florigens in photoperiodic regulation of flowering in soybean. Plant Physiology, 189(2), 1021–1036. doi: 10.1093/plphys/kiac092
29. Zhang, X., Wu, T., Wen, H., Song, W., Xu, C., Han, T., Sun, S., & Wu, C. (2021). Allelic Variation of Soybean Maturity Genes E1–E4 in the Huang-Huai-Hai River Valley and the Northwest China. Agriculture, 11(6), 478. doi: 10.3390/agriculture11060478
30. Zheng, N., Guo, Y., Wang, S., Zhang, H., Wang, L., Gao, Y., Xu, M., Wang, W., Liu, W., & Yang, W. (2023). Identification of E1-E4 allele combinations and ecological adaptability of soybean varieties from different geographical origins in China. Frontiers in Plant Science, 14:1222755. doi: 10.3389/fpls.2023.1222755
31. Zimmer, G., Miller, M. J., Steketee, C. J., Jackson, S. A., de Tunes, L. V. M., & Li, Z. (2021). Genetic control and allele variation among soybean maturity groups 000 through IX. The Plant Genome, 14(3): e20146. Portico. doi: 10.1002/tpg2.20146.