FEATURES OF THE ARRIVAL OF SOLAR RADIATION ON THE SLOPES OF WASTE DUMPS AS A FACTOR IN THE FOREST CONDITIONS OF THEIR SURFACE

Keywords: waste dump, slope, radiation balance, insolation

Abstract

The purpose of the study is to determine the temporal differences in the elements of the radiation balance on the steep slopes of the rock dumps of mining enterprises, depending on their exposure. To achieve this goal, the following tasks were solved: to establish the spatial and temporal patterns of changes in the insolation of dump slopes as the main element of the incoming part of their radiation balance; to assess the insolation of slopes of different exposures in general for the warm season (vegetation period) and monthly; to compare the insolation of the slopes of the dumps of the Donetsk coal basin and flat terrain in other natural and climatic zones of the Earth. The studies were carried out on the basis of the developed formula for the angle of incidence of sunlight on slopes of different steepness, depending on the latitude of the area, the date and hour of the day, and the exposure azimuth of the studied slope area. The difference from similar studies was the consideration of the attenuation of direct radiation during the passage of the atmosphere at different angles of incidence of solar rays on a horizontal surface. On the basis of actinometric measurements, a formula was obtained for the decrease in direct radiation relative to its maximum value, which takes place on June 22 at noon. As a result of the research, it was found that the daily insolation of the June day, starting from the exposure azimuth of the slope Ae from 120° to 230°, is higher than on the plateau (horizontal surface) up to 7.2% in the south. In all other months, the slopes can also be insolated better than the plateau, but within certain exposure limits: April at Ae from 97° to 262°, August – from 100° to 260°, May – from 110° to 250°, July – from 114° up to 245°, September – at Ae from 90° to 265°. The greatest differences in insolation from the plateau occur in September – up to 47%. It was established that on average for April-September, on slopes with a steepness of 35° at a latitude of 48° with an exposure between NW and NE (Ae = 315–40°), the influx of solar radiation is similar to the Arctic. On slopes with Ae = 45-110° and Ae = 250-315° the insolation is lower than at the latitude of the center of Donbass (48°). And on the slopes of exposures with Аe = 110–180° and Аe = 180–250°, the insolation is higher, reaching subtropical values at exposure S (Аe = 180°). In June and July, insolation here acquires a significance that is not even found in the tropics. The established differences in insolation on the slopes of dumps are significantly reflected in the conditions for the growth of different types of vegetation on them. Therefore, the use of the author’s method for determining the features of slope insolation will allow more correctly selecting the composition of tree species during afforestation of dumps, taking into account their drought resistance and light-loving nature.

References

1. Alekseenko, V.A., Bech, J., Alekseenko, A.V. & Shvydkaya, N.V. (2018). Environmental impact of the disposal of coal mining waste in soils and plants in the Rostov Oblast, Russia Journal of Geochemical Exploration Volume 184, Part B, January, 261–270. doi: 10.1016/j.gexplo.2017.06.003
2. Anis, M.S., Jamil, B., Ansari, M.A. & Bellos, E. (2019). Generalized models for estimation of global solar radiation based on sunshine duration and detailed comparison with the existing: a case study for India. Sustain Energy Technol Assess, 31, 179–198. doi: 10.1016/j.seta.2018.12.009
3. Gupta, A. K. & Biswajit, P. (2015). Ecorestoration of Coal Mine Overburden Dump to Prevent Environmental Degradation: A Review. Research Journal of Environmental Sciences, 9, 307–319. doi: 10.3923/rjes.2015.307.319.
4. Aoun, N., Bouchouicha, K. & Bailek, N. (2019). Seasonal performance comparison of four electrical models of monocrystalline PV module operating in a harsh environment. IEEE J Photovoltaics. 9(4), 1057–1063. doi: 10.1109/JPHOTOV.2019.2917272.
5. Badesku, V. (2008). Modeling solar radiation at the Earth surface. Berlin: Springer, 517. doi: 10.1007/978-3-540-77455-6.
6. Bailek, N., Bouchouicha, K., Al-Mostafa, Z., El-Shimy, M., Aoun, N., Slimani, A., Al-Shehri, S. (2018). A new empirical model for forecasting the diffuse solar radiation over Sahara in the Algerian Big South. Renew Energy, 117, 530–537. doi: 10.1016/j.renene.2017.10.081.
7. Bailek, N., Bouchouicha, K., Abdel-Hadi, Yasser A., El-Shimy, Mohamed, Slimani, A., Jamil, B.t & Djaafari, A. (2020). Developing a new model for predicting global solar radiation on a horizontal surface located in Southwest Region of Algeria, NRIAG Journal of Astronomy and Geophysics, 9(1), 341–349, doi: 10.1080/20909977.2020.1746892.
8. Baklanov, V. I. (1970). Rastitel’nye usloviya terrikonov Donbassa [Vegetative conditions of waste heaps of Donbass] / V kn. Introdukciya rasteni i zelenoe stroitel’stvo v Donbasse. Nauk. dumka, K., 15–25 (in Russian).
9. Baliuk, S.A., Danylenko, A.S. & Furdychko, O.I. (2017). Zvernennia do kerivnytstva derzhavy shchodo podolannia kryzovoi sytuatsii u sferi okhorony zemel [Appeal to the state leadership on overcoming the crisis situation in the field of land protection]. Visnyk ahrarnoi nauky, 11, 5–8. (in Ukrainian).
10. Chugh, Y. P. & Behum, P. T. (2014). Coal waste management practices in the USA: an overview Int Coal Sci Technol, 1, 163–165. doi: 10.1007/s40789-014-0023-4.
11. Gawor, L. (2014), Coal mining waste dumps as secondary deposits – examples from the Upper Silesian Coal Basin and the Lublin Coal Basin Geology, Geophysics and Environment, 40 (3), 285–289. doi: 10.7494/geol.2014.40.3.285.
12. Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., van de Zee, S.E.A.T.M. & Ritsema, C.J. (2015). Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57–65. doi: 10.1016/j.iswcr.2015.03.002.
13. Dong, X., Mace, G. G. (2003). Macearctic Stratus Cloud Properties and Radiative Forcing Derived From Ground-Based Data Collected at Barrow, Alaska. J. Climate, 16, 445–461. doi: 10.1175/1520-0442(2003)016<0445: ASCPAR>2.0.CO;2
14. Khrgian, A.H. (1958) Fizika atmosfery. Izdanie 2-e pererabotannoe. Gos. Izd-vo fiziko-matematicheskoj literatury, Moskva, 466. (in Russian)
15. Kirichek, L.S. (2003). Tipologіya terikonіv vugіl’nih shaht Donbasu za lіsoroslinnimi umovami [Typology of waste heaps of Donbass coal mines according to forest conditions]. Naukovij vіsnik UkrDLTU, 13.3, 123–127 (in Ukrainian).
16. Kondrat’ev, K.Ya., Pivovarova, Z.I., & Fedorova, M.P. (1978). Radiacionnyj rezhim naklonnyh poverhnostej [Radiation regime of inclined surfaces]. Gidrometeoizdat, L., 216.
17. Korshikov, I.I. & Zhukov, S.P. (2008). Samovozobnovlenie drevesnyh rastenij na otvalah ugol’nyh shaht Donbassa [Self-renewal of woody plants on dumps of Donbass coal mines]. Promyshlennaya botanika, 8, 17–23 (in Russian).
18. Kumar, L., Skidmore, A. & Knowles, E. (1997). Modelling topographic variation in solar radiation in a GIS environment. Intern. J. of GIS, 11(5), 475–497. doi: 10.1080/136588197242266.
19. Lai, Y.J., Chou, M.D. & Lin, P.H. (2010). Parameterization of topographic effect on surface solar radiation Journal of Geophysical Research Atmospheres, 115. D01104, 11. doi: 10.1029/2009JD012305.
20. Loggіnov, B.J., Kіrіchek, L.S. & Korec’kij, G.S. (1972) Umovi rostu lіsonasadzhen’ ta rezul’tati doslіdіv na terikonah Donbasu [Conditions for the growth of forest plantations and the results of research on waste heaps of Donbass] / Naukovі pracі USGA,. Vip. 64. С. 39–45 (in Ukrainian).
21. Marcisz, M., Probierz, K. & Gawor, Ł. (2020). Possibilities of reclamation and using of large-surface coal mining dumping grounds in Poland. /Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 36(1), 105–122. doi: 10.24425/gsm.2020.132546
22. Morgunov, V.K. (2005). Osnovy meteorologii, klimatologii. Meteorologicheskiye pribory i metody nablyudeniy: Uchebnik [Fundamentals of meteorology, climatology. Meteorological Instruments and Methods of Observation: Textbook]. Rostov/D., Feniks – Novosibirsk, Sibirskoye otdeleniye, 331 (in Russian).
23. Muzathik, A.M., Ibrahim, M.Z., Samo, K.B. & Nik, W.BW. (2011). Estimation of global solar irradiation on horizontal and inclined surfaces based on the horizontal measurements. Energy, 36(2), 812–818. doi: 10.1016/j.energy.2010.12.035.
24. Nevidimova, O.G. & Kuznecov, A.S. (2015). Morfometricheskaya differenciaciya plotnosti gelioresursa na severnom makrosklone Severo-Chujskogo hrebta (Gornyj Altaj) [Morphometric differentiation of solar resource density on the northern macroslope of the Severo-Chuysky ridge (Gorny Altai)] Sovremennye problemy nauki i obrazovaniya. № 2 (chast’ 2) URL: https://science-education.ru/ru/article/view?id=21540 (in Russian).
25. Olmo, F.J., Vida, J., Foyo, I., Castro-Diez, Y. & Alados-Arboledas, L. (1999). Prediction of global irradiance on inclined surfaces from horizontal global irradiance. Energy, 24(8), 689–704. doi: 10.1016/S0360-5442(99)00025-0
26. Pandey, B., Madhoolika, A. & Singh, S. (2014). Effects of Coal Mining Activities on Soil Properties with Special Reference to Heavy Metals. Conference Paper, 369–372. doi: 10.1007/978-3-319-18663-4_56
27. Petlovanyi, M.V., Medianyk V.Yu. (2018). Assessment of coal mine waste dumps development priority. Naukovyi Visnyk NHU, No. 4, 28-35 ISSN 2071-2227, doi: 10.29202/nvngu/2018-4/3.
28. Pinder, V.F., Popovych V.V. (2017). Rekulʹtyvatsiya porodnykh vidvaliv likvidovanykh shakht Lʹvivsʹko-Volynsʹkoho vuhilʹnoho baseynu. [Reclamation of mine waste dumps of liquidates mines in Lviv-Volyn coal basin], Naukovyy visnyk NLTU Ukrayiny, 27(3), 27 (3), 113–116. doi: 10.15421/40270325 (in Ukrainian).
29. Pluss, C. & Ohmura, A. (1997). Longwave Radiation On Snow-Covered Mountainous Surfaces. J. Appl. Meteor, 36, 818–824. doi: 10.1175/1520-0450-36.6.818
30. Popovich, V.V., Pіdgorodec’kij, Ya. І. & Pіnder, V.F. (2016). Tipologіya terikonіv L’vіvs’ko-Volins’kogo vugіl’nogo basejnu [Typology of waste heaps of the Lviv-Volyn coal basin]. Naukovij vіsnik NLTU Ukrayiny, 26.8, 238–243. doi: 10.15421/40260837 (in Ukrainian).
31. Popovych, V. (2019). Features of temperature and humidity conditions of extinguishing waste heaps of coal mines in spring. News of the Academy of Sciences of the Republic of Kazakhstan. Series of geology and technical sciences, 4(436), 230 – 237. doi: 10.32014/2019.2518-170X.118.
32. Popovych, V., Kuzmenko, O., Voloshchyshyn, A. & Petlovanyi, M. (2018). Influence of man-made edaphotopes of the spoil heap on biota. E3S Web of Conferences, 60. 00010. doi: 10.1051/e3sconf/20186000010.
33. Prausová Romana, Štefánek Michal, Rauch Ota, Kovář Pavel (2017). Trees as ecosystem engineers driving vegetational restoration/retrogradation of industrial deposits in cultural landscape. Journal of Landscape Ecology, 10(2), 122–131. doi: 10.1515/jlecol-2017-0015
34. Rodríguez-Eugenio, N., McLaughlin, M. & Pennock, D. (2018). Soil Pollution: a hidden reality. Rome, FAO, 142. URL: http://www.fao.org/3/i9183en/i9183en.pdf.
35. Shalyt, M.S. & Kostomarov, V.I. (1950). Opytnoe ozelenenie terrikonikov Donbassa [Experimental landscaping of waste heaps in Donbass]. Doklady AN USSR. T.5, 399–404 (in Russian).
36. Sidorenko, S.V., Korsovec’kii, V.O., Sidorenko, S.G. & Gladun, G.B. (2020). Sezonne ta dobove formuvannya zoni zatіnennya v priuzlіsnіj chastinі shchіl’nih polezahisnih lіsovih smug [Seasonal and daily formation of a shading zone in the marginal part of dense field-protective forest belts]. Lіsіvnictvo і agrolіsomelіoracіya, 136, 83–95. doi: 10.33220/1026-3365.136.2020.83. (in Ukrainian).
37. Simonov, Yu.G. (1958). Raspredelenie solnechnoj energii po sklonam razlichnoj krutizny i ekspozicii v ravninnyh usloviyah [Distribution of solar energy on slopes of various steepness and exposure in flat conditions]. Uchenye zapiski. M., Izd-vo MGU, 197–203 (in Russian).
38. Sivkov, S.I. (1968). Metody rascheta harakteristik solnechnoj radiacii [Methods for calculating the characteristics of solar radiation]. – L.: Gidrometeoizdat. 232 p. [In Russian].
39. Skliar, V.H. (2015). Ekolohichna fiziolohiia roslyn: pidruchnyk [Ecological physiology of plants: a textbook] / za zah. red. Yu.A. Zlobina. Universytetska knyha, Sumy, 271 (in Ukrainian).
40. Sokolova, G.G. (2016). The influence of terrain altitude, slope exposure and slope degree on plant spatial distiribution. Acta Biologica Sibirica, 2(3), 34–45. doi: 10.14258/abs.v2i3.1453 (in Russian).
41. Vacek, Z., Cukor, J., Vacek, S., Podrázský, V., Linda, R. & Kovařík, J. (2018). Forest biodiversity and production potential of post-mining landscape: opting for afforestation or leaving it to spontaneous development? Central European Forestry Journal, 64 116–126. doi: 10.1515/forj-2017-0036
42. Williams, L. D., Barry, R. G. & Andrews, J. T. (1972). Application of computed global radiation for area of high relief. J. Appl. Meteor., 11, 526–533. doi: 10.31163/2618-964X-2020-3-3-412-417
43. Yingyi Chen, Yijun Jiang, Hu Wang & Daoliang Li. (2007). Assessment of ambient air quality in coal mine waste areas – a case study in Fuxin, China. New Zealand Journal of Agricultural Research, vol. 50, 1187–1194. doi: 10.1080/00288230709 510401
44. Yucel, S. D., Yucel, M. A. & Ileri, B. (2017). Monitoring metal pollution levels using the GIS. ISPRS Annals of the Photogrammetry, Volume IV / W4, 2017 4th International GeoAdvances Workshop, 14–15 October, Safranbolu, Karabuk, Turkey, 335–338. doi: 10.5194/ isprs-annals-IV-4-W4-335-2017
45. Zástĕrová, P., Marschalko, M., Niemiec, D., Durd’ák, J., Bulko, R. & Vlšek, J. (2015). Analysis of Possibilities of Reclamation Waste Dumps after Coal Mining. Procedia Earth and Planetary Science 15 656–662. doi: 10.1016/j.proeps.2015.08.077
46. Zhukov, S.P. (2020). Drevesnye rasteniya na porodnyh otvalah Donecko-Makeevskoj gorodskoj aglomeracii [Woody plants on waste dumps of the Donetsk-Makeevka urban agglomeration]. Ekobiotekh. Tom 3, № 3, S. 412-417. DOI: 10.31163/2618-964X-2020-3-3-412-417 (in Russian).
47. Zillig, Lisa J. K., Keenan, N. & Roberts, T. (2015). Mining Rehabilitation in New South Wales (Australia) and Germany. Journal of Earth Science and Engineering 5, 499–511. doi: 10.17265 / 2159-581X / 2015.08.005
48. Zubov, O.R., Zubova, L.G. & Zubov, A.O. (2019). Ocіnyuvannya vplivu terikonіv na ekologіchnij stan agrolandshaftіv [Assessing the influence of waste heaps on the ecological state of agricultural landscapes]. Naukovij vіsnik NLTU Ukraini. L’vіv., 29(9), 50–59. doi: 10.36930/40290909 (in Ukrainian).
49. Zubova, L.G., Zubov, O.R. & Zubov, A.O. (2019). Analіz stanu lіsovih nasadzhen’ na terikonah [Analysis of the state of forest plantations on the terrikons]. Tavrіjs’kij naukovij vіsnik. Herson, 110, 141–151. doi: 10.32851/2226-0099.2019.110-2.22. (in Ukrainian).
50. Zubova, L.G., Zubov, A.R., Zubov, A.A., Kharlamova, A.V., Vorob’yev, S.G., Makarishina, Yu.I. & Buniachenko, V.V. (2015). Terrikony: Monografiya [Waste dumps: Monograph]. Lugansk: Noulidzh. 712. (in Russian). URL: http://www.geokniga.org/books/16806.
Published
2022-12-04
How to Cite
Zubov, A., & Zubov, O. (2022). FEATURES OF THE ARRIVAL OF SOLAR RADIATION ON THE SLOPES OF WASTE DUMPS AS A FACTOR IN THE FOREST CONDITIONS OF THEIR SURFACE. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 48(2), 79-89. https://doi.org/10.32845/agrobio.2022.2.12