STRESS RESISTANCE OF QUINOA AND THE ROLE OF ENDOPHITE SYMBIONTS IN ITS FORMATION

Keywords: quinoa, abiotic stress, stressogenic factors, endosymbionts, mycorrhizal fungi, bacterias, mutualism, synergism, stress-adapted and drought-tolerant crop, crop productivity.

Abstract

The main reason for the crop loss (up to 50 %) in the whole world in agrarian production is abiotic stress. The quinoa crop (Chenopodium quinoa Willd. (Amaranthaceae) is unique not only for its nutritional value, but also for its high tolerance to the action of many stressogenic factors due to wide genotypic variability. It has been proven that endosymbionts - microscopic fungi and bacterias – can change the reaction of plants to all kinds of adverse environmental changes. Plants can form associative relationships with mycorrhizal fungi, rhizospheric, epiphytic and endophytic bacterias based on the type of mutualism or synergism. Colonization by microbial symbionts potentially mitigates the adverse effects of abiotic stresses in quinoa plants. There are various hypotheses to describe the plant–endophyte interaction in the sense of increased resistance to abiotic stress. It has been shown that stress-adapted endophytic fungi, as symbionts of plants, are able to mitigate the negative effects of salinity or drought by changing a number of physiological and biochemical reactions of plants. Quinoa is considered a drought-tolerant crop capable of growing and producing seeds in semi-arid and arid regions. Evolutionarily, plants have formed various mechanisms and reactions to tolerate water shortage: morphological, physiological and molecular. But in addition to morpho-physiological adaptations that ensure plant tolerance, associative relationships with endophytic fungi deserve special attention. It is the group of mycorrhizal fungi as mutualistic partners of plants that is able to reduce the stressogenic effects of drought and salinity. Quinoa is adapted to a wide range of marginal agricultural soils that are susceptible to the effects of such negative abiotic factors. The role of mycorrhizal endophytes in mitigating these stressogenic effects on plants has been proven. In addition to fungi, the positive role of halotolerant rhizobacteria associated with the quinoa root system in alleviating salinity stress was also revealed. Plant-associated microorganisms can be used to improve plant performance and yield under stressful conditions. The diversity of bacterial species and strains associated with quinoa is an attractive prospect for the development of biotechnological drugs to enhance plant resistance to stresses and increase crop productivity. Peculiarities of edaphic microorganisms capable of maintaining symbiotic relationships with different quinoa ecotypes, despite the importance of these associations and their relevance, remain little studied until now.

References

1. Adolf, V. I., Jacobsen, S.-E., & Shabala, S. (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.) Environ. Exp. Bot., 92, 43–54. doi: 10.1016/j.envexpbot.2012.07.004
2. Aliyar, S., Aliasgharzad, N., Dabbagh Mohammadi Nasab, A. & Ostan, S. (2022). Effects of endophytic fungus Serendipitaindica on growth and nutritional characteristics of quinoa under salinity stress conditions. Journal of Sol Biology, 10(1), 1–20. doi: 10.22092/sbj.2022.354464.218
3. Alvarez-Flores, R., Winkel, T. & Nguyen-Thi-Truc, A. (2014). Root foraging capacity depends on root system architecture and ontogeny in seedlings of three Andean Chenopodium species. Plant Soi., 380, 415–428. doi: 10.1007/ s11104-014-2105-x
4. Ananda, K., & Sridhar, K.R., (2002) Diversity of endophytic fungi in the roots of mangrove species on west coast of India. Can. J. Microbiol, 48 871–878. doi: 10.1139/w02-080. PMID: 12489776.
5. Ashraf, M. & Foolad, M. R. (2005) Pre-sowing seed treatment–A shotgun approach to improve germination, plant growth, and crop yield under saline and non-saline conditions, Advances in Agronomy, 88. Academic Press; Waltham, M.A., USA, 223–271. doi: 10.1016/S0065-2113(07)00002-8
6. Ashraf, M., Athar, H. R. Harris, P.J.C., & Kwon, T.R. (2008). Some prospective strategies for improving crop salt tolerance. Advances in Agronomy, 97, 45–110. doi: 10.1016/S0065-2113(07)00002-8
7. Augé, R.M., Toler, H. D. & Saxton, A. M. (2016) Mycorrhizal stimulation of leaf gas exchange in relation to root colonization, shoot size, leaf phosphorus and nitrogen: A quantitative analysis of the literature using meta-regression. Front. Plant Sci. doi: 10.3389/fpls.2016.01084
8. Azad, K. & Kaminskyj, S. (2016). A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis, 68, 73–78. doi: 10.1007/s13199-015-0370-y
9. Bagheri, A. A., Saadatmand, S., Niknam, V., Nejadsatar, T., & Babaeizad, V. (2013). Effect of endophytic fungus, Piriformospora indica, on growth and activity of antioxidant enzymes of rice (Oryza sativa L.) under salinity stress. Int. J. Adv. Biol. Biomed. Res., 1, 1337–1350.
10. Baltruschat, H., Fodor, J., Harrach, B. D., Niemczyk, E., Barna, B., Gullner, G., et al. (2008). Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol. 180, 501–510. doi: 10.1111/j.1469-8137.2008.02583.x
11. Baltruschat, H., Fodor, J., Harrach, B. D., Niemczyk, E., Barna, B., Gullner, G., et al. (2008). Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol. 180, 501–510. doi: 10.1111/j.1469-8137.2008.02583.x
12. Bascuñán-Godoy, L., Reguera, M., Blumwald, Y. M., & Blumwald, E. (2016). Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa Willd. Planta 243, 591–603. doi: 10.1007/s00425-015- 2424-z
13. Bazile D., Jacobsen, S. E. & Verniau, A. (2016), The global expansion of quinoa: Trends and Limits. Frontiers in Plant Science, 7, doi: 10.3389/fpls.2016.00622
14. Begum, N., Qin, C., Hanger, M., Raza, S., Khan, M.I., Ashraf, M., Ahmed, N. & Zhang, L. (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science, 10(1068), 1-15. doi: 10.3389/fpls.2019.01068
15. Bertero, H.D., De la Vega, A.J., Correa, G., Jacobsen, S.E. & Mujica, A. (2004) Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crop. Res, 89, 299–318. doi: 10.1016/j.fcr.2004.02.006.
16. Bhagat, N, Raghav, M, Dubey, S. & Bedi, N. (2021) Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance. J Microbiol Biotechnol. Aug 28, 31(8), 1045–1059. doi: 10.4014/jmb.2105.05009. PMID: 34226402
17. Bhargava, A., Shukla, S., Rajan, S. & Ohri, D. (2007) Genetic diversity for morphological and quality traits in quinoa (Chenopodium quinoa Willd.) germplasm. Genet. Resour. Crop Evol., 54, 167–173. doi: 10.1007/s10722-005-3011-0
18. Bhargava, A. & Ohri, D. (2016) Origin of genetic variability and improvement of quinoa (Chenopodium quinoa Willd.) In: Rajpal V., Rao S., Raina S., editors. Gene Pool Diversity and Crop Improvement. Springer; Cham, Switzerland, 241–270.
19. Bhargava, S. & Sawant, K. (2013) Drought stress adaptation: Metabolic adjustment and regulation of gene expression. Plant Breed, 132, 21–32. doi: 10.1111/pbr.12004
20. Bhagat, N., Raghav, M., Dubey, S. & Bedi, N., (2021) Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance. J Microbiol Biotechnol. Aug 28; 31(8), 1045-1059. doi: 10.4014/jmb.2105.05009. PMID: 34226402.
21. Bilal, S., Shazad, R., Imran, M., Jan, R., Min Kim, K., & Lee, I.-J. (2020). Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: heavy metals, high temperature and drought stress. Ind. Crops Prod. 143:111931. doi: 10.1016/j.indcrop.2019.111931
22. Bitterlich, M., Rouphael, Y., Graefe, J. & Franken, P. (2018) Arbuscular mycorrhizas: A promising component of plant production systems provided favorable conditions for their growth. Front. Plant Sci., 9, 1329. doi: 10.3389/fpls.2018.01329
23. Bosque-Sanchez, H., Lemeur, R., Van Damme, P. & Jacobsen, S. E. (2003) Ecophysiological analysis of drought and salinity stress of quinoa (Chenopodium quinoa Willd.). Food Reviews International 19(1-2), 111-119. doi: 10.1081/ FRI-120018874
24. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64, 807–838.
25. Cai D, Xu Y, Zhao F, Zhang Y, Duan, H. & Guo, X. (2021) Improved salt tolerance of Chenopodium quinoa Willd. contributed by Pseudomonas sp. strain M30-35. PeerJ., 9, e10702. doi: 10.7717/peerj.10702.
26. Cai, Z., Wang, X., Bhadra, S. & Gao, Q. (2020) Distinct factors drive the assembly of quinoa-associated microbiomes along elevation. Plant and Soil, 448, 55-69. doi: 10.1007/s11104-019-04387-1
27. Cheplick, G. P. & Faeth, S. (2009) Ecology and Evolution of the Grass–endophyte Symbiosis. Oxford University Press, Oxford.Christensen.
28. Choukr-Allah, R., Rao, N. K., Hirich, A., Shahid, M., Alshankiti, A., Toderich, K., Gill, S. & Butt, K. (2016) Quinoa for marginal environments: Toward future food and nutritional security in MENA and central Asia regions. Frontiers in Plant Science, 7(346). doi: 10.3389/fpls.2016.00346
29. Choukr-Allah, R., Rao, N.K., Hirich, A., Shahid, M., Alshankiti, A., Toderich, K., Gill, S. & Butt, K.U.R. (2016) Quinoa for marginal environments: Toward future food and nutritional security in MENA and central Asia regions. Front. Plant Sci., 7, 346. doi: 10.3389/fpls.2016.00346.
30. Choudhary, D.K., Kasotia, A., Jain, S., Vaishnav, A., Kumari, S., Sharma, K.P., et al. (2015). Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stress. J. Plant Growth Regul., 35, 276–300. doi:10.1007/ s00344-015-9521-x
31. Crozier, S. E. Thomas, M. C. Aime Evans, H. C. & Holmes, K. A. (2006) Molecular characterization of fungal endophytic morphospecies isolated from stems and pods of Theobroma cacao. Plant Pathol., 55, 783–791. doi: 10.1111/j.1365- 3059.2006.01446.x
32. Dighton, J. J. White, P. & Oudemans, (2005) The Fungal Community: Its Organization and Role in the Ecosystem. Taylor & Francis Group, CRC Press, Boca Raton, FL.
33. Fuentes, F. & Bhargava, A. (2011). Morphological analysis of quinoa germplasm grown under lowland desert conditions. J. Agron. Crop Sci. 197, 124–134. doi: 10.1111/j.1439-037x.2010.00445.x
34. García-Parra, M., Roa-Acosta, D., Stechauner-Rohringer, R., García-Molano, J.F., Bazile, D. & Plazas-Leguizamón, N. (2020). Effect of temperature on the growth and development of quinoa plants (Chenopodium quinoa Willd.): A review on a global scale. Sylwan, 164(5), 411–433.
35. Gazis, R. & Chaverri, P. (2015). Wild trees in the Amazon basin harbor a great diversity of beneficial endosymbiotic fungi: is this evidence of protective mutualism? Fungal Ecol., 17, 18–29. doi: 10.1016/j.funeco.2015.04.001
36. Giauque, H., Connor, E. W. & Hawkes, C. V. (2018). Endophyte traits relevant to stress tolerance, resource use and habitat of origin predict effects on host plants. New Phytol., 221, 2239–2249. doi: 10.1111/nph.15504
37. Giauque, H., Connor, E. W. & Hawkes, C. V. (2018). Endophyte traits relevant to stress tolerance, resource use and habitat of origin predict effects on host plants. New Phytol., 221, 2239–2249. doi: 10.1111/nph.15504
38. Gómez-Pando, L. R., Álvarez-Castro, R. & Eguiluz-de la Barra (2010) A. Short communication: Effect of salt stress on Peruvian germplasm of Chenopodium quinoa Willd.: A promising crop. J. Agron. Crop Sci. 196, 391–396. doi: 10.1 111/j.1439-037X.2010.00429.x
39. González-Teuber, M., Urzúa, A., Plaza, P., & Bascuñán-Godoy, L. (2018) Effects of root endophytic fungi on response of Chenopodium quinoa to drought stress. Plant Ecol. 219, 231–240. doi: 10.1007/s11258-017-0791-1.
40. González-Teuber, M. (2016). The defensive role of foliar endophytic fungi for a South American tree. AoB Plants 8:lw050. doi: 10.1093/aobpla/plw050
41. González-Teuber, M., Vilo, C. & Bascuñán-Godoy, L. (2017) Molecular characterization of endophytic fungi associated with the roots of Chenopodium quinoa inhabiting the Atacama Desert, Chile. Genom. Data., 11, 109–112. doi: 10.1016/j.gdata.2016.12.015
42. González, J. A., Gallardo, M., Hilal, M., Rosa, M. & Prado, F. E. (2009), Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stresses: dry matter partitioning. Botanical Studies, 50, 35–42.
43. Grime, J. P. (2001) Plant Strategies, Vegetation Processes, and Ecosystem Properties. 2nd Edition, John Wiley & Sons, Properties: By J.P. Grime (2nd Edition). Wiley. ISBN 0-471-49601-4 (hbk), 417. doi: 10.1016/S0006-3207(02)00055-1
44. Gupta, B. & Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. Genom. 2014, 701596–701596. doi: 10.1155/2014/701596
45. Gupta, S., Schillaci, M., Walker, R., Smith, P. M. C. Watt, M. & Roessner, U. (2021). Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: current knowledge, perspectives and future directions. Plant Soil, 461, 219–244. doi: 10.1007/s11104-020-04618-w
46. Hinojosa, L, González, J. A., Barrios-Masias, F. H., Fuentes, F. & Murphy, K. M. (2018) Quinoa Abiotic Stress Responses: A Review. Plants (Basel). Nov 29,7(4),106. doi: 10.3390/plants7040106
47. Houston, J. & Hartley, A. J. (2003). The central Andean westslope rainshadow and its potential contribution to the origin of hyperaridity in the Atacama Desert. Int. J. Climatol., 23, 1453–1464. doi: 10.1002/joc.938
48. Hussain, M. I., Muscolo, A., Ahmed, M., Asghar, M. A. & AlDakheel, A. J. (2020). Agro-morphological, yield and quality traits and interrelationship with yield stability in quinoa (Chenopodium quinoa Willd.) genotypes under saline marginal environment. Plants, 9, 1763. doi: 10.3390/plants9121763
49. Hussin, S., Khalifa, W., Geissler, N. & Koyro, H.-W. (2017) Influence of the root endophyte Piriformospora indica on the plant water relations, gas exchange and growth of Chenopodium quinoa at limited water availability. J. Agron. Crop Sci,. 203, 373–384. doi: 10.1111/jac.12199.
50. Janouskova, M., Krak, K., Vosatka, M., Puschel, D. & Storchova, H. (2017), Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants. PLoS ONE 12(7), e0181525. doi: 10.1371/journal.pone.0181525
51. Jaramillo Roman, V., den Toom, L. A., Castro Gamiz, C., van der Pijl, N., Visser, R. G. F. & van Loo, E. N. (2020). Differential responses to salt stress in ion dynamics, growth and seed yield of European quinoa varieties. Environ. Exp. Bot., 177,104146. doi: 10.1016/j.envexpbot.2020.104146
52. Jacobsen, S. E., Mujica, A. & Jensen, C. R. (2003) The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev. Int., 19, 99–109. doi: 10.1081/FRI-120018872.
53. Jarvis, D. E., Ho Y. S., Lightfoot, D. J., Schmöckel, S. M., Li B., Borm, T. J. A., Ohyanagi, H., Mineta, K., Michell, C. T., Saber, N. et al. (2017) The genome of Chenopodium quinoa. Nature,. 542, 307–312. doi: 10.1038/ nature21370.
54. Karimi, G. Pourakbar, L. & Siavash Moghaddam, S. 2022). Effectiveness of fungal bacterial biofertilizers on agrobiochemical attributes of quinoa (Chenopodium quinoa willd.) under salinity stress. Int. J. Environ. Sci. Technol. doi: 10.1007/ s13762-022-04427-x
55. Khan, A. L., Hamayun, M., Ahmad, N., Hussain, J. Kang, S.M., Kim, Y.H., Adnan, M., Tang, D.C., Waqas, M., Radhakrishnan, R., Hwang, Y. H. & Lee, I. J., (2011) Salinity stress resistance offered by endophytic fungal interaction between Penicillium minioluteum LHL09 and Glycine max. L. J. Microbiol. Biotechnol., 21, 893–902. doi: 10.4014/jmb.1103.03012
56. Khidir, H. H., Eudy, D. M., Porras-Alfaro, A., Herrera, J., Natvig, D. O. & Sinsabaugh, R. L. (2010) A general suite of fungal endophytes dominate the roots of two dominant grasses in a semiarid grassland. J. Arid Environ., 74, 35–42.
57. Koyro, H.W.& Eisa, S.S. (2008) Effect of salinityon composition, viability and germination ofseeds of Chenopodium quinoa. Willd Plant.Soil, 302, 79–90
58. Krings, M., Taylor, T. N., Hass, H., Kerp, H., Dotzler, N. & Hermsen, E. J., (2007). Fungal endophytes in a 400-million- yr-old land plant: Infection pathways, spatial distribution, and host responses. New Phytologist., 174, 648–657. doi: 10.1111/j.1469-8137.2007.02008.x
59. Li, L., Wang, X., Zhu, P., Wu, H., & Qi, S. (2017). Plant growth promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula. Plant Physiol. Biochem., 119, 211–223. doi: 10.1016/j. plaphy.2017.08.029
60. Lutz, M. &Bascuñan-Godoy, L. (2017) The revival of quinoa: a crop for health. In: Waisundara V, Shiomi N (eds) Superfood and functional food—an overview of their processing and utilization. InTech, ISBN 978-953-51-5020-6, 37–54
61. Mastretta, С., Taghavi, С., Daniel van der Lelie, Mengoni, A., Galardi, F., Gonnelli, C., Barac, T., Boulet, J., Weyens, N. & Vangronsveld, J. (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. International Journal of Phytoremediation, 11(3), 251-267. doi: 10.1080/15226510802432678
62. Moghaddam, M. S. H., Safaie, N., Soltani, J. & Hagh-Doust, N., (2021). Desertadapted fungal endophytes induce salinity and drought stress resistance in model crops. Plant Physiol. Biochem., 160, 225–238. doi: 10.1016/j.plaphy.2021. 01.022
63. Molina-Montenegro, M. A., Acuña-Rodríguez, I. S., Torres-Díaz, C., Gundel, P. E. & Dreyer, I. (2020). Antarctic root endophytes improve physiological performance and yield in crops under salt stress by enhanced energy production and Na+ sequestration. Sci. Rep., 10, 5819. doi: 10.1038/s41598-020-62544-4
64. Muñoz-Rojas, J. & Caballero-Mellado (2003) Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microbial ecology, 46 (4), 454–464. doi: 10.1007/s00248-003-0110-3
65. Newsham, K. K. (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol., 190, 783–7934 doi: 10.1111/j.1469-8137.2010.03611.x 66. Newsham, K. K., Upson, R., & Read, D. J. (2009) Mycorrhizas and dark septate endophytes in polar regions. Fungal Ecol., 2, 10–20. doi: 10.1016/j.funeco.2008.10.005
67. Oosten, V., Stasio, M. J., Cirillo, E. D., Silletti, V., Ventorino, S., Pepe, V., Raimondi, O. & Maggio, G. A., (2018). Root inoculation with Azotobacter chroococcum 76A enhances tomato plants adaptation to salt stress under low N conditions. BMC Plant Biol., 18, 205
68. Orcutt, D. M. & Nilsen, E. T. (2000) The Physiology of Plants under Stress Soil and Biotic Factors. JohnWiley and Sons Inc., New York, 680 p
69. Ortiz, R., Ruiz-Tapia, E. N. & Mujica-Sanchez, A. (1998) Sampling strategy for a core collection of Peruvian quinoa germplasm. Theor. Appl. Genet,. 96, 475–483. doi: 10.1007/s001220050764
70. Parida, S. K. & Das, A. B.b(2005). Salt tolerance and salinity effects on plants. Ecotoxicol. Environ. Safety, 60, 324-349. doi:10.1016/j.ecoenv.2004.06.010
71. Pitzschke, A. (2016) Developmental peculiarities and seed-borne Endophytes in Quinoa: Omnipresent, robust bacilli contribute to plant fitness. Front. Microbiol., 7. doi: 10.3389/fmicb.2016.00002
72. Pitzschke, A. (2018) Molecular dynamics in germinating, endophyte-colonized quinoa seeds. Plant Soil., 422, 135–154. doi: 10.1007/s11104-017-3184-2
73. Porras-Alfaro, Herrera, J., Sinsabaugh, R. L., Odenbach, K. J., Lowrey, T. & Natvig, D. O. (2008) Novel root fungal consortium associated with a dominant desert grass. Appl. Exp. Microbiol., 74, 2805–2813.
74. Pusztahelyi, T., Holb, I. J., & Pócsi, I. (2015). Secondary metabolites in fungus plant interactions. Front. Plant Sci., 6, 573. doi: 10.3389/fpls.2015.00573
75. Radhakrishnan, R., Khan, A. L. & Lee, I.-J. (2013). Endophytic fungal pre-treatments of seeds alleviates salinity stress effects in soybean plants. J. Microbiol., 51, 850–857. doi: 10.1007/s12275-013-3168-8
76. Rodriguez, R. J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., et al. (2008). Stress tolerance in plants via habitat adapted symbiosis. ISME J., 2, 404–416. doi: 10.1038/ismej.2007.106
77. Rodriguez, L. A. & Isla, M. T. (2009) Comparative analysis of genetic and morphologic diversity among quinoa accessions (Chenopodium quinoa Willd.) of the South of Chile and highland accessions. J. Plant Breed. Crop Sci., 1, 210–216.
78. Rodriguez, R. J., Redman, R. S. & Henson, J. M. (2004). The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig. Adapt. Strateg. Glob. Chang., 9, 261–272. doi: 10.1023/B:MITI.0000029922.31110.97
79. Rodriguez, R. J., White, J. F., Arnold, A. E., & Redman, R. S. (2009). Fungal endophytes: diversity and functional roles. New Phytol., 182, 314–330. doi: 10. 1111/j.1469-8137.2009.02773
80. Ruiz, K. B., Biondi, S., Oses, R., Acuña-Rodríguez, I. S., Antognoni, F., Martinez-Mosqueira, E. A., Coulibaly, A., Canahua-Murillo, A., Pinto M., Zurita-Silva, A., Bazile, D., Jacobsen, S. E., & Molina-Montenegro, M. A., (2014). Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development, 34(2), 349-359. doi: 10.1007/s13593-013-0195-0
81. Ruiz, K. B., Biondi, S., Martínez, E. A., Orsini, F., Antognoni, F. & Jacobsen, S.-E. (2016) Quinoa—A model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol., 150, 357–371. doi: 10.1080/11263504.2015.1027317
82. Ruiz, K. B., Aloisi, I., Del Duca, S., Canelo, V., Torrigiani, P., Silva, H., et al. (2016 ). Salares versus coastal ecotypes of quinoa: salinity responses in Chilean landraces from contrasting habitats. Plant Physiol. Biochem. ,101, 1–13. doi: 10.1016/j.plaphy.2016.01.010
83. Rydlová, J.& Vosfitka, M. 2001. Association of dominant plant species with arbuscular mycorrhizal fungi during vegetation development on coal mine spoil brank. Folia Geobotanica, 36, 85-97. doi: 10.1007/BF02803141
84. Shah, S. S., Shi, L., Li, Z., Ren, G., Zhou, B. & Qin, P. (2020). Yield, agronomic and forage quality traits of different quinoa (Chenopodium quinoa Willd.) genotypes in Northeast China. Agronomy, 10, 1908. doi: 10.3390/agronomy10121908
85. Singh, L. P., Gill, S. S. & Tuteja, N. (2011). Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal. Behav., 6, 175–191. doi: 10.4161/psb.6.2.14146
86. Soudzilovskaia, N. A., Van Bodegom, P. M., Terrer, C., Zelfde,M., McCallum, I., Luke-McCormack, M., Fisher, J., Brundrett, M., Cesar de Sa, N. & Tedersoo L. (2019). Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nature Communications. 10(5077), 1–10. doi: 10.1038/s41467-019-13019-2
87. Tapia, M. (2013) The Long Journey of Quinoa: Who wrote its history. In: Bazile D., Bertero H.D., Nieto C., editors. State of the Art Report on Quinoa around the World Volume 1. FAO; Santiago, Chile: CIRAD; Montpellier, France, 2015, 1–7.
88. Toju, H., Yamamoto, S., Sato, H., Tanabe, A., Gilbert, G. & Kadowaki, K. (2013) Community composition of root-associated fungi in a Quercus dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi. Ecol. Evol., 3, 1281–1293. doi: 10.1002/ece3.546
89. Trognitz, B. R. (2003) Prospects of breeding quinoa for tolerance to abiotic Stress. Food Rev. Int., 19, 129–137. doi: 10.1081/FRI-120018879
90. Trivedi, P, Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. (2020) Plant-microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology., 18, 607–621. doi: 10.1038/s41579-020-0412-1
91. Vierheilig, H. (2004). Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. Journal of Plant Physiology 161: 339-341. doi: 10.1078/0176-1617-01097
92. Vimal, S. R., Singh, J. S., Arora, N. K., Singh, S. (2017) Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere, 27(2), 177–192. doi:10.1016/S1002-0160(17)60309-6
93. Vinale, F., Nicoletti, R., Lacatena, F., Marra, R., Sacco, A., Lombardi, N. et al. (2017). Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat. Prod. Res., 31, 1778–1785. doi: 10.1080/14786419.2017.1290624
94. Visagie, C., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C., Perrone, G. et al. (2014). Identification and nomenclature of the genus Penicillium. Stud. Mycol. 78, 343–371. doi: 10.1016/j.simyco.2014.09.001
95. Urcelay, C., Acho, J. & Joffre, R., (2011). Fungal root symbionts and their relationship with fine root proportion in native plants from the Bolivian Andean highlands above 3,700 m elevation. Mycorrhiza, 21, 323–330. doi: 10.1007/ s00572-010-0339-x
96. White, J. F. & Torres, M. S. (2010). Is plant endophyte-mediated defensive mutualism the result of oxidative stress protection? Physiol. Plant. 138, 440–446. doi: 10.1111/j.1399-3054.2009.01332.x
97. Yang, A., Akhtar, S.S., Iqbal, S., Amjad, M., Naveed, M., Zahir, Z.A., & Jacobsen, S.-E., (2016) Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funct. Plant Biol., 43, 632–642. doi: 10.1071/FP15265
98. Yang, A., Akhtar, S.S., Iqbal, S., Qi, Z., Alandia, G., Saddiq. M.S., & Jacobsen, S.-E., (2018) Saponin seed priming improves salt tolerance in quinoa. J. Agron. Crop Sci., 204, 31–39. doi: 10.1111/jac.12229
99. Yang, A., Akhtar, S. S., Iqbal, S., Qi, Z., Alandia, G., Saddiq, M. S., & Jacobsen, S. E. (2018) Saponin seed priming improves salt tolerance in quinoa. Journal of Agronomy and Crop Science., 204, 31–39. doi: 10.1111/ jac.12229
100. Zakaria, L., Jamil, M. I., & Anuar, I. S. (2016) Molecular characterisation of endophytic fungi from roots of wild banana (Musa acuminata). Trop. Life Sci. Res., 27, 153–162.
101. Zarea, M., Hajinia, S., Karimi, N., Goltapeh, E. M., Rejali, F. & Varma, A., (2012). Effect of Piriformospora indica and Azospirillum strains from saline or nonsaline soil on mitigation of the effects of NaCl. Soil Biol. Biochem. 45, 139–146. doi: 10.1016/j.soilbio.2011.11.006
102. Zhang, F., Wang, Y., Liu, C., Chen, F., Ge, H., Tian, F. et al. (2019). Trichoderma harzianum mitigates salt stress in cucumber via multiple responses. Ecotoxicol. Environ. Saf., 170, 436–445. doi: 10.1016/j.ecoenv.2018.11.084
103. Zhang, S, Xu, B, & Gan, Y (2019) Seed treatment with Trichoderma longibrachiatum T6 promotes wheat seedling growth under NaCl stress through activating the enzymatic and nonenzymatic antioxidant defense systems. Int J Mole Sci., 20(15), 3729. doi:10.3390/ijms20153729
104. Zhu, J. K. (2001). Plant salt tolerance. Trends Plant Sci., 6, 66–71. doi: 10.3389/fpls. 2016.01787
105. Zlatev, Z., & Lidon, F.C., (2012) An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir. J. Food Agric., 24, 57–72. doi:10.9755/ejfa.v24i1.10599
Published
2023-01-20
How to Cite
Trotsenko, N., & Melnyk, A. (2023). STRESS RESISTANCE OF QUINOA AND THE ROLE OF ENDOPHITE SYMBIONTS IN ITS FORMATION. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 49(3), 66-75. https://doi.org/10.32845/agrobio.2022.3.9