CHARACTERISTICS OF THE EEG OF FEMALE BIOLOGY STUDENTS WITH DIFFERENT EFFICIENCY OF VISUAL AND IMAGINARY THINKING
Abstract
Achieving a high result in mental activity provides a visual-figurative type of thinking as a component of the individual characteristics of a person’s intellectual activity. Female biology students with different indicators took part in the study of mental activity on the visual-figurative type of thinking. Using the DX-NT32.V19 hardware and software complex, registration and primary analysis of brain EEG activity was carried out. As a result of the research, it was established that during the successful completion of visual thinking tasks, the total number of functional connections decreases due to a decrease in interhemispheric relationships, but intrahemispheric coherence increases. Functional connections in all EEG bands indicate the transmission of information through the corpus callosum, which creates conditions for performing cognitive tasks with the help of rapid analysis. There is a «territorial narrowing» and strengthening of interactions in the frontal, temporal and parietal regions. This gives reason to assume that the effectiveness of visual thinking depends on a high level of knowledge and skills stored in specific areas of the cortex (temporal and parietal) and the coherence of the work of the frontal areas, which can establish connections with «polymodal» and « supermodal» elements of the temporal and parietal zones. Thus, according to the results of our research, effective visual thinking corresponds to higher values of spectral power in the β2-subband and lower power in the α-band of the EEG, coherence patterns of the right hemisphere in the β1-subband of the EEG and an increase in spatial complexity, and the strength of coherent connections in θ-stripes with numerous long interhemispheric interactions, which is characteristic when performing creative tasks. In cases of increasing the efficiency of figurative thinking, a significant functional connection is established in the δ-band in the posterior parts of the cortex and short interhemispheric intersymmetric synchronizations, which is explained by the inhibitory processes of active attention to extraneous stimuli, thanks to which the integration of individual elements during the imaginary creation of images is possible. Also, the probability of achieving a high result is related to the visual-spatial strategy of performing the task, the simultaneous way of the cognitive process, the inhibition of motor programs and the reduction of concentration on the task itself.
References
2. Aziz-Zadeh, L, Liew, S, & Dandekar, F. (2013) Exploring the neural correlates of visual creativity. Soc Cogn Affect Neurosci, 8(4), 475–480. doi: 10.1093/scan/nss021.
3. Bechtereva, N. P, & Nagornova, Zh.V. (2007) Changes in EEG coherence during tests for nonverbal (Figurative) creativity, Human Physiology. 33(5): 515-23. DOI: 10.1134/S0362119707050015
4. Cherninskyi, A., Kryzhanovskyi, S., Tukajev, S., Piskorska, N., Zyma, I., & Makarchuk, M. (2010) Relations between human resting and reactive EEG during activity with different information richness. Physies of the Alive, 18(2), 85–91.
5. Chupryna G., Svyrydova N., & Kozlov V. (2016) Features of electrical brain activity in patients with multiple sclerosis, taking into account the comorbidity. East European journal of Neurology, 06(12), 20–26.
6. Danko, S. G. (2005) Elektroentsefalograficheskie korrelyatsii sostoyaniy mozga pri verbalnom obuchenii [Electroencephalographic correlations of brain states in verbal learning]. Rossiya Moskva: Fiziologiya cheloveka, 31(5), 15–20 (in Russian).
7. David, T.J. Liley, & Suresh D. Muthukumaraswamy (2020) Evidence that alpha blocking is due to increases in system-level oscillatory damping not neuronal population desynchronisation, NeuroImage, 208, 116408, doi: 10.1016/j. neuroimage.2019.116408.
8. Dikaya, L. A., & Denisova, I. A. (2011) Sravnitelnyiy analiz funktsionalnoy organizatsii koryi mozga u muzyikantov i hudozhnikov pri vyipolnenii professionalno-spetsifichnoy tvorcheskoy deyatelnosti [Comparative analysis of the functional organization of the cerebral cortex in musicians and artists in the performance of professionally specific creative activities] Rostov-na-Donu: Severo-Kavkazskiy psihologicheskiy vestnik, 9(1), 14–17 (in Russian).
9. Donoghue, T., Haller, M., Peterson, E., Varma, P., Sebastian, P., Gao, R., Noto, T., Lara, A., Wallis, J., Knight, R., Shestyuk, A., & Voytek, B. (2020) Parameterizing neural power spectra into periodic and aperiodic components. Nature neuroscience, 23(12), 1655–1665. doi: 10.1038/s41593-020-00744-x
10. Egorova, I. S. (1973) Elektroentsefalografiya [Electroencephalography] Rossiya Moskva: Meditsina, 296 (in Russian).
11. Evertz, R., Hicks, D.G., & Liley, D.T.J. (2022) Alpha blocking and 1/fβ spectral scaling in resting EEG can be accounted for by a sum of damped alpha band oscillatory processes. PLoS Comput. Biol., 18(4), e1010012. doi: 10.1371/ journal.pcbi.1010012
12. Fernindez, T., Harmony, T., Rodriguez, M., Reyes, A., Marosi, E., & Bernal, J. (1993) Test-retest reliability of EEG spectra1 parameters during cognitive tasks. I. Absolute and relative power, Int. J. Neurosci, 68, 255–261.
13. Fillips, Ch. (2012) Kreativ i obraznoe myishlenie: 50 50 zadach dlya trenirovok [Creative and imaginative thinking: 50+50 tasks for training] Rossiya Moskva: Jeksmo. 192 (in Russian).
14. Finke, R. A. (1985) Theories relating mental imagery to perception, Psychological Bulletin. 98(2):236–259. doi: 10.1037//0033-2909.98.2.236.
15. Finnigan S., & Robertson I. H. (2011) Resting EEG theta power correlates with cognitive performance in healthy older adults. Psychophysiology, 48(8), 1083–1087. doi: 10.1111/j.1469-8986.2010.01173.x
16. Guselnikov V. I. (1976) Elektrofiziologiya golovnogo mozga: kurs lektsiy. [Electrophysiology of the brain: course of lectures] Rossiya Moskva: Vyisshaya shkola, 423 (in Russian).
17. Harmony, T, Fernández, T, Silva, J, Bosch, J, Valdés, P, Fernández-Bouzas, A, Galán, L., Aubert, E., & Rodríguez, D. (1999) Do specific EEG frequencies indicate different processes during mental calculation? Neurosci Lett. 266(1), 25–8. doi: 10.1016/s0304-3940(99)00244-x
18. Hartoyo, A, Cadusch, P. J., Liley, D. T., & Hicks, D. G.. (2020) Inferring a simple mechanism for alpha-blocking by fitting a neural population model to EEG spectra. PLoS computational biology. 16(4):e1007662. pmid:32352973
19. Karatyigin, N. A. (2015) Elektrofiziologicheskie korrelyatyi razlichnoy rezultativnosti intellektualnoy deyatelnosti: dissertatsiya. [Electrophysiological correlates of different efficiency of intellectual activity] Rossiya Moskva: NII normalnoy fiziologii RAMN, Rossiya, (in Russian).
20. Karpova, V. V., & Dikaya, L. A. (2014) Osobennosti funktsionalnyih svyazey koryi mozga u ispyituemyih s raznyim urovnem produktivnosti obraznoy tvorcheskoy deyatelnosti [Features of the functional connections of the cerebral cortex in subjects with different levels of productivity of figurative creative activity] Rostov-na-Donu: Severo-Kavkazskiy psihologicheskiy vestnik, 12(2), 42–46 (in Russian).
21. Klimesch, W, Schimke, H, & Schwaiger, J. (1994) Episodic and semantic memory: an analysis in the EEG theta and alpha band. Electroencephalogr. Clin. Neurophysiol. 91, 428–441.
22. Klimesch, W. (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Brain Res. Rev., 29, 169–195. 23. Lazarev, V. V. (2006) The relationship of theory and methodology in EEG studies of mental avtivity. Int. J. Psychophysiol, 62, 384–393.
24. Maksymovych, K. Yu. (2011) Neirofiziolohichni mekhanizmy spryiniattia informatsii v rizni fazy menstrualnoho tsyklu u zhinok: dysertatsiia. [Neurophysiological mechanisms of information perception in different phases of the menstrual cycle in women] Kyiv: Taras Shevchenko National University of Kyiv (in Ukrainian).
25. Mitchell, D. J, McNaughton, N, Flanagan, D, & Kirk, I. J. (2008) Frontal - midline theta from the perspective of hippocampal «theta». Progress in Neurobiology, 86, 156–185.
26. Petsche, H, Lacroix, D, Lindner, K, Rappelsberger, P, & Schmidt-Henrich, E. (1992) Thinking with images or thinking with language: a pilot EEG probability mapping study. Int. J. Psychophysiol, 12, 31–39.
27. Polunina, A. G., & Lefterova, N. P. (2012) Topografiya spektralnyih harakteristik bioelektricheskoy aktivnosti golovnogo mozga v sostoyanii pokoya [Topography of the spectral characteristics of the bioelectrical activity of the brain at rest] Rossiya Moskva: Vestnik nevrologii, psihiatrii i neyrohirurgii, 4, 48–54 (in Russian).
28. Rominger, C, Papousek, I, Perchtold, C. M, Weber, B, Weiss, E. M, & Fink, A. (2018) The creative brain in the figural domain: Distinct patterns of EEG alpha power during idea generation and idea elaboration. Neuropsychologia. pii:S0028-3932(18)30070-8. doi: 10.1016/j.neuropsychologia.2018.02.013.
29. Tarasova, I. V. (2007) Elektrofiziologicheskiy analiz polovyih osobennostey polusharnoy organizatsii obraznogo i verbalnogo tvorcheskogo myishleniya: dissertatsiya. [Electrophysiological analysis of gender characteristics of the hemispheric organization of figurative and verbal creative thinking] Rossiya Novosibirsk: Federalnoe gosudarstvennoe byudzhetnoe nauchnoe uchrezhdenie «Nauchno-issledovatelskiy institut fiziologii i fundamentalnoy meditsinyi» RAMN (in Russian).
30. Thürer, B., Stockinger, C., Focke, A., Putze, F., Schultz, T., & Stein, T. (2016) Increased gamma band power during movement planning coincides with motor memory retrieval. NeuroImage, 125, 172–181.