GRAFTING OF PLANTS IN THE SYSTEM OF MEASURES FOR GROWING OF THE CUCURBITACEAE FAMILY

Keywords: family Cucurbitaceae, genus Cucurbita, melon crops, grafting, quality of crop production, physiological and biochemical changes, stress resistance, adaptation, plant development, cultivation technology.

Abstract

Despite its ancient history, in modern conditions grafting is a technology that is not only widely used, but also constantly improved. Its application in the system of activities for growing plants of the Cucurbitaceae family is an integral part of solving one of the priority problems of humanity: providing the population with food products. The purpose of this publication is a review of literary sources devoted to the issue of the use of this technology in the cultivation of plants of the Cucurbitaceae family. At the same time, pumpkins are widely used as rootstock. When evaluating the effectiveness of the application of the specified technology, considerable attention is paid to the study of yield indicators and plant productivity. It has been shown that grafting can really achieve early harvesting, extend the growth period and increase yield. At the background of grafting, there is often a change in the quality of the received fruits (their shape, skin thickness, juice pH, glucose, amino acid, mineral elements, etc.). For the most part, it is noted that the changes registered in fruits when using vaccination are not accompanied by a fundamental deterioration in the quality of the obtained products. At the same time, literary sources note that an unsuccessful combination of plants selected for grafting can lead to a decrease in both yield and product quality. That is, the selection of an appropriate combination of rootstock and scion is the key to achieving high productivity of melon crops. The facts recorded in grafted cultures regarding yield indicators, growth rate, fruit characteristics, etc. are a natural result of physiological changes that occur during the cultivation of such plants. As a result of grafting, in particular, the plants showed changes in the absorption of water and mineral elements, synthesis of phytohormones, activation of the flow of substances and energy exchange, and increased cold resistance of plants. Grafting is also a means of influencing the eco-characteristics of individuals and modeling plants with traits that meet production requirements. In particular, the use of grafting is effective in solving the issue of increasing salt tolerance of members of the Cucurbitaceae family. The results of many studies prove that grafting, including through the use of highly resistant or immune rootstocks, can significantly improve the resistance of plants to diseases. In turn, grafted plants in a disease-free environment showed higher yields, average fruit weight, soluble dry matter content, and plant survival.

References

1. Agbagwa, I. O. & Ndukwu, B. C. (2004). The value of morpho-anatomical features in the systematics of Cucurbita L. (Cucurbitaceae) species in Nigeria. Afr. J. Biotechnol, 3, 541–546.
2. Alan, О., Sen, F. & Duzyaman, E. (2017). The effectiveness of growth cycles on improving fruit quality for grafted watermelon combinations. Food Sci. Technol. 38. Suppl. 1. doi.org/10.1590/1678-457x.20817
3. Bobos, I. M. & Lavrentieva N. O. (2013). Introduktsiia maloposhyrenykh ovochevykh kultur rodyny Harbuzovi [Introduction of lesserknown vegetable crops of Cucurbitaceous family]. Sortovyvchennia ta okhorona prav na sorty roslyn, 1, 47–50 (in Ukrainian). doi: 10.21498/2518-1017.1(18).2013.58751
4. Cao, Jianhua, Lin, Weifu, & Chen, Junming (2005). A review of the affinity between rootstock and scion grafting. Journal of Tropical Agriculture, 25 (4), 64–69.
5. Chen, Guilin, Ie, Lanchun & Li, Jianwenet (2000). Effects of low temperature stress on photosynthetic characteristics of grafted zucchini seedlings. Journal of Shanghai Agricultural Sciences, 1, 42–45.
6. Chen Liping, Song Zengjun & Ma Xingzhuang (2004). Effect of grafting on quality of cucumber in solar greenhouse. Journal of Northwest Agricultural Sciences, 13(2), 170–171. doi: 10.17660/ActaHortic.2007.761.47
7. Cohen, R., Burger, Y., Horev, C., Porat, A. & Edelstein, M. (2005). Performance of Galia-type melons grafted on to Cucurbita rootstock in Monosporascus cannonballus-infested and non-infested soils. Annals of Applied Biology, 146, 381–387. doi: 10.1111/j.1744-7348.2005.040010.x
8. Colla, G., Rouphael, Y., Cardarelli, M., Salerno, A. & Rea, E. (2010). The effectiveness of grafting to improve alkalinity tolerance in watermelon. Environ. Exp. Bot, 68, 283–291. doi:10.1016/j.envexpbot.2009.12.005
9. Colla, G., Rouphael, Y., Leopardi, C. & Bie, Z. (2010). Role of grafting invegetable crops grown under saline conditions. Sci. Hort., 127, 147–155.
10. Colla, G., Suãrez, C.M.C., Cardarelli, M., & Rouphael, Y. (2010). Improving nitrogen use efficiency in melon by grafting. HortScience, 45, 559–565.
11. Crinò, P., Lo B., Rouphael, Y., Colla, G., Saccardo, F. & Paratore, A. (2007). Evaluation of rootstock resistance to fusarium wilt and gummy stem blight and effect on yield and quality of a grafted ‘Inodorus’ melon. Hort Sci., 42, 521–525. doi: 10.21273/HORTSCI.42.3.521
12. Edelstein, M. (2004). Grafting vegetable – crop plants: pros and cons. Acta Horticulturae, 659, 235–238. doi:10.17660/ActaHortic.2004.659.29
13. Edelstein, M., Tyutyunik, J., Fallik, E., Meir, A. & Tadmor, Y. (2014). Horticultural evaluation of exotic watermelon germplasm as potential rootstocks. Sci Horti, 165, 196–202. doi: 10.1016/j.scienta.2013.11.010
14. FAO Production Yerbook (2002). Roome, 55, 416.
15. Ferriol, M. & Pico, B. (2008). Pumpkin and winter squash. In: Vegetables I (edited by J. Prohens & F. Nuez). New York: Springer., 317–349.
16. Georg, R. (1980). Horticultura in Hungaru. Sci. Hort. 31, 23–27.
17. Halit Yetisir & Nebahat Sari (2003). Effect of different rootstock on plant growth, yield and quality of watermelon. Australian Journal of Experimental Agriculture, 43, 1269–1274. doi:10.1071/EA02095
18. Halit Yetışır, Nebahat Sari & Seral Yücel (2003). Rootstock resistance to Fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasitica, 31, 2, 163–169. doi:10.1007/BF02980786
19. Han Zhiping, Guo Shirong & Zhu Guorong (2006). Effects of rootstock on growth, yield and quality of grafted watermelon. Chinese Vegetables, 2, 22–24.
20. Honcharenko, V. Yu., Paramonova, T. V., Mohylna, O. M., Mykhailynm, V. I. & Mozghovskyi, O. F. (2019). Systema udobrennia ovochevykh i bashtannykh kultur [Fertilization system of vegetable and melon crops]. Ahrar. Nauka, K., 152 (in Ukrainian).
21. Hutsol, N. M. & Zhuravel, N. M. (2018). Ekzotychni roslyny rodyny Cucurbitaceae, shcho kultyvuiutsia v Ukraini [Exotic plants of the Cucurbitaceae family cultivated in Ukraine]. Materialy III Mizhnarodnoi naukovo-praktychnoi internet- konferentsii «Suchasnyi rukh nauky» Mizhnarodnoho elektronnoho naukovo-praktychnoho zhurnalu «WayScience», 1-2 zhovtnia 2018 r. Dnipro, 2018, 155–159 (in Ukrainian).
22. Khareba, V. & Kokoyiko, V. (2019). Vykorystannia pryrodnykh rehuliatoriv rostu roslyn (RRR) u tekhnolohiiakh vyroshchuvannia harbuza muskatnoho (Cucurbita moschata Duch. ex Poir.) [Using of natural plant growth regulators (PPP) in the technology of growing of muscat pumpkin (Cucurbita moschata Duch. ex Poir.)] Ovochivnytstvo i bashtannytstvo, 61, 320–326 (in Ukrainian).
23. Kokoiko, V. V. & Khareba, O. V. (2018). Ekonomichna ta bioenerhetychna otsinka elementiv tekhnolohii vyroshchuvannia harbuza velykoplidnoho v Lisostepu Ukrainy [Economic and bioenergetic assessment of the elements of the technology of growing large-fruited pumpkin in the Forest Steppe of Ukraine]. Naukovi dopovidi NUBiP Ukrainy. Seriia Ahronomiia. 3 (73), 1–8 (in Ukrainian).
24. Kolesnik, І. (2014). Sposib selektsii harbuza na skorostyhlist. [The method of breeding of pumpkins on earliness]. Ovochivnytstvo i bashtannytstvo, 60, 124–127 (in Ukrainian).
25. Kolesnyk, I. I. & Sych, Z. D. (1996). Bahatonasinnevyi harbuz – perspektyvna oliina kultura dlia Ukrainy [Multiseeded pumpkin is a promising oil crop for Ukraine]. Materialy mizhnar. nauk. konf., 44-46 (in Ukrainian).
26. Kolesnyk, I. I. (2015). Dzherela hospodarsko-tsinnykh oznak kulturnykh vydiv harbuza dlia riznykh napriamiv selektsii [Sources of economic and valuable characteristics of cultivated types of pumpkin for different areas of selection]. Naukovi dopovidi Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy (in Ukrainian). Access mode: http://nbuv.gov.ua/UJRN/Nd_2015_4_20
27. Kolesnyk, I.I. (2014). Henetychni resursy harbuza velykoplidnoho v selektsii na nasinnievu produktyvnist [Genetic resources of great fruitful pumpkin in breeding for seed production]. Ovochivnytstvo i bashtannytstvo, 60, 128–136 (in Ukrainian).
28. Koltunov, V. & Bulakh, M. (2012). Strukturni skladovi plodiv harbuza [Structural components of pumpkin fruits]. Tovary i rynky. 2012, 2, 122–129 (in Ukrainian). 29. Kondratenko, S. & Lancaster, Y. (2022). Important correlation interdependences between the complex economic and valuable characteristics of F1 courgette hybrids in the aspect of their adaptive potential. Vegetable and Melon Growing, (71), 6–15 (in Ukrainian). doi: 10.32717/0131-0062-2022-71-6-15
30. Koshchii, O.V. (2013). Problemy zabezpechennia naselennia Ukrainy prodovolstvom [Problems of providing the population of Ukraine with food]. Soc.-ec.problems of the current period of Ukraine, 6 (104) 4, 441–448 (in Ukrainian).
31. Kubrak, S. M. (2021). Shcheplennia ovochevykh kultur [Grafting of vegetable crops]. [Elektronnyi resurs]. – Access mode: https://rep.btsau.edu.ua/bitstream/BNAU/6887/1/Shcheplennia_ovochevykh.pdf (in Ukrainian)
32. Lebedeva, A. T. (1987). Tyikvennyie kulturyi [Pumpkin cultures]. M: Rosselhozizdat, 80 (in Russian).
33. Lee, J. M. (1994). Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. Hort. Science, 235–239. doi: 10.21273/HORTSCI.29.4.235 34. Lee, J. M., Bang H. J. & Ham, H.S (1998). Grafting of vegetables (Grafting and Raising of Seedlings, For Further Development of Horticulture in East Asia). Journal of the Japanese Society for Horticultural Science, 1998, 67, 1098–1104. doi.org/10.2503/jjshs.67.1098
35. Lendel, V. F. (2014). Osoblyvosti rostu i rozvytku roslyn ta urozhainist harbuza muskatnoho zalezhno vid viku rozsady za rozsadnoho sposobu vyroshchuvannia [Peculiarities of plant growth and development and the yield of butternut squash depending on the age of the seedling under the seedling growing method]. Ahrobiolohiia, № 1 (109), 81–84 (in Ukrainian).
36. Li Hongli, Yu Xianchang & Wang Huasen (2005). Effects of grafting and grafting rootstock on fruit quality of cucumber. Journal of Northwest Agricultural Sciences, 14 (1), 129–132.
37. Lindepei (2000). Origin and classification of the pumpkin plant. Chinese Watermelon and Melon, 2000 (1), 36–38.
38. Linnik, Z., Chaiuk, O., Sergienko, O. & Onyshchenko, O. (2021). Vykhidnyi material kavuna dlia selektsii na kompleksnu stiikist do khvorob [The watermelon source material for selection for complex disease resistance]. Ovochivnytstvo i bashtannytstvo, 69, 13–23 (in Ukrainian). doi: 10.32717/0131-0062-2021-69-13-23 39. Liu Huiying, Zhu Zhujun & Qian Qiongqiuet (2004). Effects of rootstock on sugar metabolism and related enzyme activities in small early maturing watermelon fruits. Acta Horticulturae Sinica, 31 (1), 47–52.
40. Liu, H. Y., Zhu, Z. I., Qian, Q. Q. & Ge, Z. P. (2004). The effects of different rootstocks on the sugar metabolism and related enzyme activities in small and early-maturing watermelon during fruit development. Acta Horticulturae, (31), 47–52.
41. Loy, J. B. (1982). Autumn Pride winter Squash. Hort. Science. 17 (5), 832–833.
42. Lu Bin (1982). Physiology of Vegetables and Melons. Beijing, Agriculture Press, 376–379.
43. Lu Wenjing. Study on technology of grafting disease resistance and increasing yield of Muskmelon with thin skin (2002). Liaoning Agricultural Sciences, 1, 16-20
44. Lyimar, V. A., Grigorov, Yu. G. & Lyimar, A. O. (2011). Bahchevyie kulturyi v lechebno-profilakticheskom pitanii [Bakhchevy cultures in the treatment and prevention issue]. Herson: Aylant, 252 (in Russian).
45. Lymar, A. & Kholodnyak, O. (2021). Efektyvnist vykorystannia stymuliatoriv rostu pry vyroshchuvanni kavuna stolovoho v umovakh pivdnia Ukrainy [Efficiency of the use of growth stimulators in the growing of watermelons in the conditions of the south of Ukraine]. Ovochivnytstvo i bashtannytstvo, (69), 99–109. (in Ukrainian). doi: 10.32717/0131-0062-2 021-69-99-109
46. Lymar, O. A. (2006). Bashtannytstvo – perspektyvna haluz [Masonry is a promising industry]. Visnyk ahrarnoi nauky, 12, 43–47 (in Ukrainian).
47. Lymar, O. A. (2012). Bashtannytstvo Ukrainy [Bashtannitstvo of Ukraine]. Mykolaiv, MDAU:372 (in Ukrainian).
48. Masuda, M., Nakamura, T. & Gomi, K. (1981). Studies on the characteristics of nutrient absorption of rootstocks in grafting fruit vegetable. Bulletin Faculty of Agriculture, 27, 179–186
49. Miguel, A., Maroto, J.V. & Bautista, A. S. (2004). The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methy bromide for control of Fusarium wit. Scientia Horticulturae, 103, 9–17. doi:10.1016/j. scienta.2004.04.007
50. Nepochatov, O. P. (1987). Bashtanni kultury [Bashtanni culture]. Urozhai, K., 176 (in Ukrainian).
51. Onipko, V.V. & Taran, I.O. (2009). Peculiarities of growth and development of promising varieties of the species Cucumis mello L. [Peculiarities of growth and development of promising varieties of Cucumis mello L.]. Problems of reproduction and protection of biodiversity of Ukraine in the light of the doctrine of the noosphere. Materials of the All- Ukrainian Student Scientific and Practical Conference. Astraya, Poltava, 119–121 (in Ukrainian).
52. Paris, H. S. (2000). Histori of the cultivar – groups of Cucurbita pepo. Hortic. Revs., New York, 25, 71–170.
53. Park, C. Y., Lee J. H. & Yoo J. H. (2005). WRKY group IId transcription factors interact with calmodulin. FEBS Letters, 2005, 579 (6), 1545–1550. doi: 10.1016/j.febslet.2005.01.057.
54. Pina, A. & Errea, P. (2005). A review of new advances in mechanism of graft compatibility – incompatibility. Scientia Horticulturae, 2005, 106, 1–11. doi: 10.1016/j.scienta.2005.04.003
55. Pulgar, G., Vilora, G., Moreno, D. A. & Romero, L. (2000). Improving the mineral nutrition in grafted watermelon plants: nitrogen metabolism. Biologia Plantarum, 43, 607–609. doi: 10.1023/A:1002856117053
56. Rana Shahzad Noor, Zhi Wang, Muhammad Umair, Muhammad Yaseen, Muhammad Ameen, Shoaib-Ur Rehman, Muzammil Usman Khan, Muhammad Imran, Waqar Ahmed & Yong Sun (2019). Interactive Effects of Grafting Techniques and Scion-Rootstocks Combinations on Vegetative Growth, Yield and Quality of Cucumber (Cucumis sativus L.). Agronomy, 9(6), 288. doi: 10.3390/agronomy9060288
57. Ruiz J. M., Belakbir A., Lоpez-Cantarero I., Romero L. (1997). Leaf – macronutrient content and yield in grafted melon plants. A model to evaluate the influence of rootstock genotype. Scientia Horticulturae, 71, 227–234. doi: 10.1016/ S0304-4238(97)00106-4
58. Ruiz, J. M. & Romero, L. (1999). Nitrogen efficiency and metabolism in grafted melon plants. Scientia Horticulturae, 81, 113–123. doi: 10.1016/S0304-4238(98)00200-3
59. Sergienko, O. & Linnik, Z. (2023). Adaptyvnyi potentsial kolektsii hibrydiv F1 kavuna za produktyvnymy pokaznykamy [Adaptive potential of a collection of F1 watermelon hybrids by productive indicators and vegetative period]. Ovochivnytstvo i bashtannytstvo, (72), 32–40. (in Ukrainian). doi: 10.32717/0131-0062-2022-72-32-40
60. Serhiienko, O. & Linnik, Z. (2022). Riven zviazku mizh oznakamy kolektsiinykh sortozrazkiv kavuna [Level of relationship between characteristics of watermelon collections]. Ovochivnytstvo i bashtannytstvo, 71, 16–24. (in Ukrainian). doi: 10.32717/0131-0062-2022-71-16-24
61. Serhiienko, O., Shabetia, O., Ivchenko, T., Harbovska, T., Solodovnyk, L. & Radchenko, L. (2022). Otsinka novykh partenokarpichnykh hibrydnykh kombinatsii F1 ohirka za tsinnymy selektsiinymy oznakamy ta yikh minlyvistiu v umovakh zakhyshchenoho hruntu [Evaluation of new partenocarpic hybrid combinations F1 cucumber by valuable selection traits and their variability in conditions of protected]. Ovochivnytstvo i bashtannytstvo, (71), 25–32 (in Ukrainian). doi: 10.32717/0131- 0062-2022-71-25-32
62. Shi, Yuelin, Liu, Peiying & Luo, Qingxi (1995). Effect of pumpkin anvil with blac k seed on salt resistance of cucumber. Journal of Southwest Agricultural University, 17, 3, 232–236.
63. Shu, Yingchun (1998). Brief history of cultivation of main melon vegetables. Agricultural History of China, 17 (3), 94–99.
64. Sokolov, D. Y. (1996). Tyikva – semennaya produktivnost, vyihod masla i ego zhironokislotnyiy sostav. [Pumpkin – seed productivity, oil yield and its fatty acid composition]. Materialyi mezhdunarodnoy nauchnoy konferentsii, 150–152 (in Russian).
65. Sych, Z. D., Kolesnyk, I. I. & Didenko, V. P. (2001). Kavun, dynia, harbuz. Suchasni metody selektsii ovochevykh i bashtannykh kultur [Watermelon, melon, pumpkin. Modern methods of selection of vegetable and melon crops]. Kh., 644 (in Ukrainian)
66. Sydora, V.V. (2017) Formuvannia ta rozvytok marketynhu na rynku ovochevoi produktsii [Formation and development of marketing in the vegetable market.]. Business Economics and Management, 4(60), 111–118 (in Ukrainian).
67. Syrovytskyi, K.H. & Kharchenko, S.O. (2019). Aktualnist vyroshchuvannia harbuza v Ukraini [The relevance of pumpkin cultivation in Ukraine]. Materialy MNPK «Innovatsiini rozrobky v ahrarnii sferi», KhNTUSH, NNI MSM, 12–13 hrudnia 2019 roku, 191 (in Ukrainian).
68. Traka-Mavrona, E., Koutsika-Sotiriou, M. & Pritsa, T. Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Scientia Horticulturae, 2000, 83, 353 – 362. doi:10.1016/S0304-4238(99)00088-6
69. Vdovenko, S. A. & Palamarchuk, I. I. (2021). Innovatsii v tekhnolohii vyroshchuvannia ovochevykh roslyn rodyny Harbuzovi u vidkrytomu grunti [Innovations in the technology of growing vegetable plants of the pumpkin family in open ground]. Vinnytsia, 184 (in Ukrainian).
70. Wang Guangyin, Han Shidong & Zhao Yipenget (2005 а). Effects of NaCl stress and Ca2+ and GA3 on seed germination of three vegetable species of Pumpkin. Journal of Plant Resources and Environment, 14 (1), 26–30.
71. Wang Guangyin, Zhou Xiumei & Zhang Jianweiet (2005 b). Effects of NaC1 stress on germination of cucumber seeds. Agricultural Research in the Arid Areas, 23, 1, 121–125.
72. Wang Ran, Cai Run & Pan Junsong (2005a). Effects of salt stress on germination characteristics of cucumber seeds, Journal of Shanghai Jiao Tong University (Agricultural Science Edition), 23, 2, 148–153.
73. Wang Ran, Chen Guilin & Liang Jinget (2005 b). Effects of salt stress on seed germination characteristics of blackseeded pumpkin and white-seeded pumpkin. Journal of Agricultural University of Hebei., 28, 5, 42–44.
74. Wang Ran, Chen Guilin & Song Wei (2006). Effects of NaCl stress on ion content in two kinds of pumpkin seedlings. Chinese Journal of Plant Physiology and Molecular Biology, 32, 1, 94–98.
75. Wang Xiqing (2002). Preliminary study on the effect of grafting melon on disease prevention and yield increase. Chinese Watermelon and Melon, 2, 22–23.
76. Wang Yuyan, Jia Weiguo & Shen Sile (1995). Study on physiological effects of different rootstocks on grafted cucumber. Chinese Vegetables, 2, 31–34
77. Wang Yuyan, Jia Weiguo & Shen Sileet (1995). Study on physiological effects of different rootstocks on grafted cucumber. Chinese Vegetables, 2, 31–34
78. Wolford Ron (2008). Pumpkins and More. Ron Wolford and Drusilla Banks. University of Illinois Extension., 12.
79. Xu Shengli, Chen Xiaoqing & Chen Qingyun (2004). Physiological characteristics and resistance to fusarium wilt in grafted watermelon plants. Chinese Agricultural Science Bulletin, 20 (2), 149–151.
80. Xu Shengli, Chen Xiaoqing & Chen Qingyun (2004). Physiological characteristics and resistance to fusarium wilt in grafted watermelon plants. Chinese Agricultural Science Bulletin, 20, 2, 149–151
81. Yang Lifei, Zhu Yuelin & Hu Chunmeiet (2005). Study on growth dynamics and leaf physiological and biochemical characteristics of grafted watermelon under NaCl stress. Southwest China Journal of Agricultural Sciences, 18 (4), 439–443.
82. Yang P.M., He S.T., Jiang L.N., Chen X.J., Li Y.F. & Zhou J.G. (2020). The effects of pumpkin rootstock on photosynthesis, fruit mass, and sucrose content of different ploidy watermelon (Citrullus lanatus). Photosynthetica. 58 (5), 1130–1139. doi: 10.32615/ps.2020.068
83. Yang Shijie & Lu Shanfa (1995). Study on the basic theory of plant grafting, Biology Bulletin, 30, 9, 10–12.
84. Yang Xiuling, Yu Jihua & Li Yajia (2004). Effects of NaCl stress on seed germination and seedling growth of cucumber. Journal of Gansu Agricultural University, 39, 1, 6–9.
85. Yetisir, H. & Sari, N. (2004). Effect of hypocotyl morphology on survival rate and growth of watermelon seedlings grafted on rootstocks with different emergence performance at various temperatures, Turkish Journal of Agriculture and Forestry, 28, 231–237.
86. Yu Xianchang & Wang Lijiang (1998). Research and application of vegetable grafting. Journal of Shandong Agricultural University, 2, 249–256.
87. Yu Xianchang (1997). Cold resistance of grafted cucumber seedlings. Doctoral Dissertation of Nanjing Agricultural University, 13–24.
88. Yue Qing, Miao Yi & Fan Sanjiang (1999). Effect of different rootstocks on grafting effect of watermelon. Journal of Shanxi Normal University (Natural Science Edition), 1, 53–55.
89. Yunqi Zhang, Shiqi Liu & Haibo Wang (2004). Effect of salt-tolerant rootstock grafting on salt-resistant characteristics of watermelon seedlings. Journal of Shanghai Agricultural Sciences, 20, 3, 62–64.
90. Yunqi Zhang, Shiqi Liu & Haibo Wang (2004). Effect of salt-tolerant rootstock grafting on growth, yield and quality of watermelon. Shandong Agricultural Sciences, 4, 30–31.
91. Zeng Yi’an, Zhu Yuelin & Huang Huixin (2004). Effects of pumpkin rootstock with black seed on fruit bearing, disease resistance and nutrient content of cucumber. Journal of Plant Resources and Environment, 13, 4, 15–19.
92. Zeng Yi’an, Zhu Yuelin & Huang Huixin (2005). Studies on photosynthetic characteristics, hormone content and soluble protein in grafted cucumber leaves. Journal of Nanjing Agricultural University, 28 (1), 16–19.
93. Zhang Hongmei, Huang Danfeng & Ding Minget (2005). Changes of three enzyme activities during the healing process of watermelon grafts with different seedling age scions. Biological Physiology Communication, 41 (3), 302–304.
94. Zhang Yanpeng, Yu Xianchang & Zhang Zhenxian (2004). Photosynthetic characteristics and protective enzyme activities of grafted cucumber in solar greenhouse. Chinese Journal of Horticulture, 31 (1), 94–96.
95. Zhang Yunqi, Liu Shiqi & Yang Fengjuan (2003). Study on screening of salt-tolerant watermelon rootstock and its salt-tolerant mechanism. Journal of Northwest Agricultural Sciences, 12 (4), 105–108.
96. Zheng Qun & Song Weihui (2000). Research progress of vegetable grafting technology at home and abroad (Part 1). Changjiang Vegetables, 8, 1–4
97. Zhong, Y. Q. & Bie, Z. L. (2007). Effects of grafting on the growth and quality of cucumber fruits. Acta Hortic. 761, 341–347. doi: 10.17660 /ActaHortic.2007.761.47
98. Zhou Baoli, Lin Guirong & Li Ningyi (1997). Vegetable grafting cultivation. Beijing: China Agriculture Press, 17–18, 44–45
Published
2023-06-09
How to Cite
Songtao, H. (2023). GRAFTING OF PLANTS IN THE SYSTEM OF MEASURES FOR GROWING OF THE CUCURBITACEAE FAMILY. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 51(1), 129-136. https://doi.org/10.32782/agrobio.2023.1.15