GERMINATION ENERGY AND FIELD SIMILARITY OF POTATO SEEDS FROM CROSSING AND SELF-POLLINATION

Keywords: potatoes, complex interspecific hybrids, varieties, hybrid seeds, self-pollination seeds, seed germination energy, laboratory germination

Abstract

The article presents the results of the study of germination energy of hybrid seeds with the participation of complex interspecific hybrids and their self-pollination and varieties, as well as laboratory similarity performed at Sumy National Agrarian University in 2018. In separate blocks of combinations with the participation of the same parental form, a significant effect on the germination energy of hybrid seeds of crossbreeding components has been proved. For example, among the four combinations with pollinator interspecific hybrid of Belarusian selection 212.110-12, the difference in the manifestation of the indicator was 15.2 % with the least expression in combinations with maternal forms 83.58s52 and 85.291s12, respectively, self-pollination of four-species hybrid and single backcross hybrid. The difference in seed germination energy in five combinations with the pollinator of S. andigenum was 16.1 %, but in four (except for the use of the mother form of a single backcross of the six-species hybrid 86.96s32) it was 9.9 %. Similar data to the above were obtained in four combinations with the participation of the pollinator interspecific hybrid of Belarusian selection 212.31-10. The specific influence of crossbreeding components on the germination of hybrid seeds within 5–9 days was revealed. The best results were obtained among seeds with origin 86.96s32 x S. andigenum – 28.3 %. They were quite high in three more populations involving the species. The exception was the use of the mother form of double backcross sixspecies hybrid 89.721s81 – 9.2 %. In 54.1 % of combinations, the laboratory germination of seeds was 90 % or more with the maximum manifestation of the hybrid seed Shchedryk x Podoliya – 96.8 %. In another population with the participation of the mentioned maternal form also obtained high results – 95.4 %. The highest energy of seed germination from self-pollination was found in the variety Irbytska (90.8 %) and interspecific hybrids 81.436s4 and 81.1546s103 – 90.0 % each. The opposite was true for the Anika variety (76.0 %) and the onetime backcross of the six-species hybrid 85.291s12 (77.2 %). The maximum laboratory germination had seeds from selfpollination of Mezhyrichka variety – 96.0 % and four-species hybrid 81.1546с103 – 97.5 %. It was found that in terms of germination energy, hybrid seeds yielded to self-pollinated varieties by 6.0 %, and interspecific hybrids – by 5.2 %, and in terms of laboratory germination, it was 3.7 and 3.1 %, respectively. Only in some combinations: 90.691 / 21 x Svitanok kyivskiy, 81.397s50 x 212.31s10 and 891.1546s103 seed germination energy was higher than in seeds from self-pollination. At the same time, in the population of 83.58s52 x 212.110-12, the difference was the largest and negative – 16.1 %. Regarding the laboratory germination of seeds in only two combinations: 90.691 / 21 x Svitanok kyivskiy and 81.397s50 x 212.31-10 the difference with the material from self-pollination was positive, although with a small difference – 0.2 %.

References

1. Anasimova, I. N. (2017). Citoplazmaticheskaja muzhskaja steril'nost' i perspektivy ee ispol'zovanija v selekcionnogeneticheskih issledovanijah i semenovodstve kartofelja [Cytoplasmic male sterility and prospects for its use in breeding and genetic studies and potato seed production]. Vavilovskij zhurnal genetiki i selekcii, 21(1), 83–95 (in Russian). doi: 10.18699/VJ.226
2. Bondarchuk, A. A., Koltunov, V. A., Olijnyk, T. M., Furdyga, M. M., Vyshnevs'ka, O. V., Osypchuk, A. A., Kuprijanova, T. M. & Zaharchuk, N. A. (2019). Kartopljarstvo: metodyka doslidnoi' spravy [Potato growing: research methodology]. TVORY, Vinnycja, 649 (in Ukrainian).
3. FAO. Food Agriculture Organization. 2010. Access mode: www.fao.org.in.
4. Hayder, A., Ahmed, M. B., Hannan, M. M., Razvy, M. A., Mandal, M. A., Salahin, M., Karim, R., & Hossain, K. M. (2007). Analysis of genetic diversity in some potato varieties grown in Bangladesh. Middle-East Journal of Scientific Research, 2(3-4), 143–145.
5. Hniteckyi, M. O. (2021). Peculiarities of manifestation of economic traits among offspring from interspecific and intervarietal crossings of potatoes. Qualifying scientific work on the rights of the manuscript. Sumy, 198.
6. Ermishin, A. P., Voronkova, E. V., Kozlov, V. A., Roljuhovich, Ju. V., Luksha, V. I., Levyj, A. V., Jakovleva, G. A., Semanjuk, T. A., Dubinich, V. L., & Rod'kina, I. A. (2021). Mezhvidovaja gibridizacija v selekcii kartofelja [Interspecific hybridization in potato breeding]. Belarusskaja navuka, Minsk, 396 (in Russian).
7. Gavrilenko Y. A. & Yermishin A. H. (2017). Interspecific hybridization of potato: theoretical and applied aspects. Vavilovskij zhurnal genetiki i selekcii, 21(1), 16–29. doi: 10.18699/VJ17.220.
8. Gordijenko, V. V., & Podgajec'kyj, A. A. (2000). Analiz skladovyh genofondu kartopli za prydatnistju dlja vyroshhuvannja z vykorystannjam botanichnogo nasinnja [Analysis of the components of the potato gene pool for suitability for cultivation using botanical seeds]. Kartopljarstvo, 30, 113–117 (in Ukrainian).
9. Kiru, S. D., & Rogozina, U. V. (2017). Mobilizacija, sohranenie i izuchenie geneticheskih resursov kul'tiviruemogo i dikorastushhego kartofelja [Mobilization, conservation and study of the genetic resources of cultivated and wild potatoes]. Vavilovskij zhurnal genetiki i selekcii, 21(1), 7–15 (in Russian). doi: 10.18699/VJ17.219
10. Kuchumov, V. O. (1990). Shema proizvodstva kartofelja na osnove nastojanih gibridnyh semjan [Potato production scheme based on infused hybrid seeds]. Selekcija i semenovodstvo, 2, 41–43 (in Russian).
11. Meenakshi, Kumari; Manoj, Kumar; & Shcshcank, Shekhar Solankey (2018). Breeding Potato for Quality Improvement. Submited: May 8th 2017 Reviewed: October 5-th 2017 Published; June 6th 2018. doi: 10.5772/intechopen.71482.
12. Metodychni rekomendacii' shhodo provedennja doslidzhen' z kartopleju [Methodical recommendations for conducting research with potatoes]. (2002). IK, Nemishajeve, 183.
13. Muthoni, J., Shimelis, H., Melis, R., & Kabira, J. (2012). Reproductive biology and early generation’s selection in conventional potato breeding. Australian Journal of Crop Science, 6(3), 488–497.
14. Pershina, L. A., & Trubacheeva, N. V. (2016). Interspecific incompatibility in wide hybridization of plants and ways to overcome. Vavilovskij zhurnal genetiki i selekcii, 20(4), 416–425. doi: 10.18699/VJ16.082.
15. Podgajec'kyj, A. A. (2002). Vyroshhuvannja kartopli z vykorystannjam botanichnogo nasinnja. Kartoplja [Growing potatoes using botanical seeds. Potato]. T.1. Bila Cerkva, 290–313 (in Ukrainian).
16. Podhaietskyi, A. A. (2012). Mezhvidovaja gibridizacija v selekcii kartofelja v Ukraine [Interspecies crosses in potato breeding in Ukraine]. Vavilov journal of genetics and breeding. 2, 16, 471–479 (in Russian).
17. Podgajec'kyj, A. A., Kravchenko, N. V., & Gnitec'kyj, M. O. (2019). a. Projav seredn'oi' masy bul'b sered potomstva vid mizhvydovyh ta mizhsortovyh shreshhuvan' kartopli [Manifestation of the average mass of tubers among the offspring from interspecific and interspecific crossings of potatoes]. International Scientifics and practical conference Topical issues of Methods of teaching natures sciences. Poland. Lublin. December 27–28, 30–33 (in Ukrainian).
18. Podgajec'kyj, A. A., Krjuchko, L. V., & Gnitec'kyj, M. O. (2019). b. Zhyttjezdatnist' gibrydnogo nasinnja kartopli ta vtraty materialu pid chas vyroshhuvannja sijanciv pershogo roku [Viability of hybrid potato seeds and loss of material during the cultivation of seedlings in the first year]. Visnyk Harkivs'kogo NAU. Serija «Roslynnyctvo, selekcija i nasinnyctvo, plodoovochivnyctvo i zberigannja», 2, 45–55 (in Ukrainian). doi: 10.35550/ISSN2413-7642/2019/02/05.
19. Podgaeckij, A. A., Gniteckij, M. O., Kravchenko, N. V., & Shapoval, R. N. (2020). Produktivnost' potomstva ot mezhvidovyh i mezhsortovyh skreshhivanij kartofelja [Productivity of offspring from interspecific and intervarietal crossing of potatoes]. Sb. nauchn. tr. «Kartofelevodstvo». Minsk, 27, 24–29 (in Russian).
20. Poljuhovich, Ju. V. (2018). Geneticheskoe raznoobrazie citoplazm dikogo allotetraploidnogo vida kartofelja Solanum stoloniferum v reshenii problemy muzhskoj steril'nosti mezhvidovyh gibridov [Genetic diversity of cytoplasms of the wild allotetraploid potato species Solanum stoloniferum in solving the problem of male sterility of interspecific hybrids]. Vescі NAAN Belarusі. Ser. Bіol nauk, 63(1), 33–38 (in Russian).
21. Rogozina, E. V., & Khavkin, E. E. (2017). Interspecific potato hybrids as donors of durable resistance to pathogens. Vavylovskyj zhurnal genetyky y selekcyy, 21(1), 30–41. doi: 10/18699/VJ17.221
22. Sobran, I. V. (2019). Produktyvnist' potomstv, oderzhanyh v procesi bekkrosuvannja skladnyh mizhvydovyh gibrydiv kartopli [Productivity of offspring obtained in the process of backcrossing of complex interspecific potato hybrids. Dys. … na zdobuttja nauk. stupenja kandydata s.-g. nauk. Sums'kyj NAU. Sumy, 215 (in Ukrainian)..
23. Sobran, V. M., Podgajec'kyj, A. A., & Sobran, I. V. (2021). Intensyfikacija selekcijnogo procesu kartopli z vykorystannjam umov Ukrai'ns'kyh Karpat [Intensification of potato selection process using the conditions of the Ukrainian Carpathians]. Abstracts of V International Scientific and Practical Conference: Science and Education: problems, prospects and innovetions. Kyoto, Japan 4–6 February, 895–900 (in Ukrainian).
24. Zhatova, G. O. (2010). Zagal'ne nasinnjeznavstvo [General seed science]. Navchal'nyj posibnyk. Universytets'ka knyga, Sumy, 272 (in Ukrainian).
Published
2022-02-21
How to Cite
Podhaiyetskiy, A. A., Shapoval, R. M., & Kravchenko, N. V. (2022). GERMINATION ENERGY AND FIELD SIMILARITY OF POTATO SEEDS FROM CROSSING AND SELF-POLLINATION. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 45(3), 38-44. https://doi.org/10.32845/agrobio.2021.3.5