HARMFULNESS FUSARIUM SP. FROM MYCOBIOTA OF WINTER WHEAT SEEDS

Keywords: Fusarium sp., harmfulness, mycobiota of seeds, winter wheat

Abstract

Fusarium sp. on wheat cause spots and fusarium head blight. The main source of their infection is seeds. They are part of the seed mycobiota together with other fungi. The species composition of Fusarium determines the range of mycotoxins and other secondary metabolites in seeds that affect its germination and plant development. Therefore, the aim of our research was to establish the Fusarium species composition in the mycobiota of wheat seeds from the North-East of Ukraine and the influence of species on seed germination and seedling development. Samples of wheat seeds were obtained from farms in Sumy and Kharkiv regions. Fusarium sp. were identified by macro- and micromorphological characteristics. They were isolated during the analysis of mycobiota of winter wheat seeds on potato-glucose agar. The nature of the harmful effect was established by observing the development of colonies of Fusarium fungi on the PGA, noting the impact on seed germination and development of seedlings and roots. Seedling length was measured on the 7th and 14th day, determining the average. In the mycobiota of winter wheat seeds in the North-East of Ukraine during 2015–2020, 7 species of Fusarium were identified, which belong to 5 sections: F. culmorum and F. graminearum (Discolor section), F. oxysporum (Elegans), F. verticillioides (Liseola), F. sporotrichioides and F. poae (Sporotrichiella). Calculation of the frequency of occurrence showed the dominance of two species: F. sporotrichioides and F. poae. Seeds with Fusarium had no characteristic signs of damage, except for wrinkles. Some species have affected the germination of wheat in different ways: from complete suppression to the formation of seedlings that are not inferior in length to others. Most often, observations showed thinning, deformation, reduction in length and necrotic spots on seedlings. Necrotization was also noted on the roots, which were also often suppressed. According to our observations, F. culmorum was the most harmful for the germination of wheat on a nutrient medium. He was the fastest to form a plaque. Most seeds under the influence of its toxins were unable to germinate. Some seedlings were completely necrotized. F. sporotrichioides and F. poae could form inconspicuous plaques and have no obvious symptoms of plant oppression. Measurement of seedlings demonstrated how F. sporotrichioides and F. poae reduce the length of wheat seedlings. Seedling length comparisons were made with Alternaria sp., as they did not have phytotoxic effects during all years of research, and even stimulated seed germination. F. poae reduced the length of seedlings in the presence of an average of 51.3%, and F. sporotrichioides – by 45.5%. Fusarium sp. from mycobota wheat seeds had a negative effect on its germination and plant development.

References

1. Achari, S. R., Kaur, J. K., Mann, R. C., Sawbridge, T., Summerell, B. A., & Edwards, J. (2021). Investigating the effector suite profile of Australian Fusarium oxysporum isolates from agricultural and natural ecosystems. Plant Pathology, 70(2), 387–396. doi: 10.1111/ppa.13303
2. Chang, H.-X., Domier, L. L., Radwan, O., Yendrek, C. R., Hudson, M. E., & Hartman, G. L. 2016. Identification of multiple phytotoxins produced by Fusarium virguliforme including a phytotoxic effector (FvNIS1) associated with sudden death syndrome foliar symptoms. Molecular Plant-Microbe Interactions, 29(2), 96–108. doi: 10.1094/MPMI-09-15-0219-R
3. Cosic, J., Jurkovic, D., Vrandecic, K., & Simic, B. (2007). Pathogenicity of Fusarium species to wheat and barley ears. Cereal Research Communications, 35(2), 529–532. doi: 10.1556/CRC.35.2007.2.91
4. Crous, P. W., Lombard, L., Sandoval-Denis, M., Seifert, K. A., Schroers, H. J., Chaverri, P., Gené, J., Guarro, J., Hirooka, Y., Bensch, K., Kema, G., Lamprecht, S. C., Cai, L., Rossman, A. Y., Stadler, M., Summerbell, R. C., Taylor, J. W., Ploch, S., Visagie, C. M., Yilmaz, N., & Thines, M. (2021). Fusarium: more than a node or a foot-shaped basal cell. Studies in mycology, 98, 100116. doi: 10.1016/j.simyco.2021.100116
5. Ferrigo, D., Raiola, A., & Causin, R. (2016). Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules, 21(5), 627. doi: 10.3390/molecules21050627
6. Furtat, I. M., Ostapiuk, N. A., & Antoniuk, M. Z. (2017). Biolohichni osoblyvosti ta ekolohiia predstavnykiv rodu Fusarium, zbudnykiv zakhvoriuvan zlakiv [Biological features and ecology of the genus Fusarium, pathogens of cereals]. Naukovi zapysky NaUKMA, 197, 3–18 (in Ukrainian).
7. Gagkaeva, T. Yu. Gavrilova, O. P., Levitin, M. M., & Novozhilov, K. V. (2011). Fuzarioz zernovyih kultur [Fusarioz of grain crops]. Zaschita i karantin rasteniy, 5, 70–112 (in Russian).
8. Gagkaeva, T. Yu., Dmitriev, A. P., & Pavlyushin, V. A. Mikrobiota zerna – pokazatel ego kachestva i bezopasnosti. [Grain microbiota is an indicator of its quality and safety]. Zaschita i karantin rasteniy, 9, 14–18 (in Russian).
9. Garcia Júnior, D., Vechiato, M. H., Menten, J. O. M., & Lima, M. I. P. M. (2007). Influência de Fusarium graminearum na germinação de genótipos de trigo (Triticum aestivum L.). Arquivos do Instituto Biológico, 74(2), 157–161. doi: 10.1590/1808-1657v74p1572007
10. Goyal, S., Ramawat, K. G., & Mérillon, J. M. (2016). Different shades of fungal metabolites: An overview. Fungal metabolites, 1–29. doi: 10.1007/978-3-319-19456-1_34-1
11. Hrytsev, O. A., Zozulia, O. L., Vorobiova, N. H., & Skivka, L. M. (2018). Monitorynh vydovoho skladu hrybiv rodu Fusarium u nasinnievomu materiali ozymoi pshenytsi na terytorii Ukrainy [Monitoring of the species composition of fungi of the genus Fusarium in winter wheat seed material on the territory of Ukraine]. Mikrobiolohiia i biotekhnolohiia, 2, 81–89 (in Ukrainian). doi: 10.18524/2307-4663.2018.2(42).134443
12. Hof, H. (2020). The medical relevance of Fusarium spp. Journal of fungi (Basel, Switzerland), 6(3), 117. doi: 10.3390/jof6030117
13. Ivaschenko, V. G., & Nazarovskaya, L. A. (1998). Geograficheskoe rasprostranenie i osobennosti bioekologii Fusarium graminearum Schwabe. [Geographic distribution and features of bioecology of Fusarium graminearum Schwabe.]. Mikologiya i fitopatologiya, 32(5), 1–10 (in Russian).
14. Ji, F., He, D., Olaniran, A. O., Mokoena, M. P., Xu, J., & Shi, J. (2019). Occurrence, toxicity, production and detection of Fusarium mycotoxin: a review. Food Prod Process and Nutr, 1, 6. doi: 10.1186/s43014-019-0007-2
15. Leslie, J. F., & Summerell, B. A. (2006). The Fusarium laboratory manual. Blackwell Publishing, Iowa. 388.
16. Karányi, Z., Holb, I., Hornok, L., Pócsi, I., & Miskei, M. (2013). FSRD: fungal stress response database. Database: the journal of biological databases and curation, bat037. doi: 10.1093/database/bat037
17. López-Díaz, C., Rahjoo, V., Sulyok, M., Ghionna, V., Martín-Vicente, A., Capilla, J., Di Pietro, A., & López-Berges, M. S. (2018). Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Molecular Plant Pathology, 19(2), 440–453. doi: 10.1111/mpp.12536
18. Moretti, A., Logrieco, A. F., & Susca, A. (2017). Mycotoxins: An underhand food problem. Methods in Molecular Biology, 1542, 3–12. doi: 10.1007/978-1-4939-6707-0_1
19. O’Donnell, K, Ward, T. J., Robert, V. A. R. G, Crous P. W. et al. (2015). DNA sequence-based identification of Fusarium: Current status and future directions. Phytoparasitica, 43, 583–595. doi: 10.1007/s12600-015-0484-z
20. Orina, A., Gavrilova, O. & Gagkaeva, T. (2018). Adaptatsiya metoda kolichestvennoy PTsR dlya vyiyavleniya predstaviteley mikobiotyi zernovyih kultur [Adaptation of the method of quantitative PCR to identify representatives of the mycobiota of grain crops]. Microbiology Independent Research Journal, 5(1), 71–77. (in Russian). doi: 10.18527/2500-2236-2018-5-1-71-77
21. Perincherry, L., Lalak-Kańczugowska, J., & Stępień, Ł. (2019). Fusarium-produced mycotoxins in plant-pathogen interactions. Toxins, 11(11), 664. doi: 10.3390/toxins11110664
22. Reveglia, P., Cinelli, T., Cimmino, A., Masi, M., & Evidente, A. (2018). The main phytotoxic metabolite produced by a strain of Fusarium oxysporum inducing grapevine plant declining in Italy. Natural Product Research, 32(20), 2398–2407. doi: 10.1080/14786419.2017.1415897
23. Sadyikova, V. S., Lihachev, A. N., & Bondar, P. N. (2010). Ogranichenie razvitiya kompleksa vozbuditeley kornevyih gniley yachmenya antagonistami roda Trichoderma [Limitation of the development of a complex of pathogens of barley root rot by antagonists of the genus Trichoderma]. Mikologiya i fitopatologiya, 44(6), 556–562 (in Russian).
24. Shvartau, V. V., Zozulia, O. L., Mykhalska, L. M., & Sanin, O. Yu. (2016). Fuzariozy kulturnykh roslyn [Fusarium wilt of cultivated plants]. Monohrafiia. K. : Lohos 164 (in Ukrainian).
25. van der Lee, T., Zhang, H., van Diepeningen, A., & Waalwijk, C. (2015). Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 32(4), 453–460. doi: 0.1080/19440049.2014.984244
26. Wilson, W., Dahl, B., & Nganje, W. (2018).Economic costs of Fusarium Head Blight, scab and deoxynivalenol. World Mycotoxin Journal, 11(2), 291–302. doi: 10.3920/WMJ2017.2204
27. Xia, R., Schaafsma, A. W., Wu, F., & Hooker, D. C. (2020). Impact of the improvements in Fusarium head blight and agronomic management on economics of winter wheat. World Mycotoxin Journal, 13(3), 423–439. doi: 10.3920/WMJ2019.2518.
Published
2022-07-21
How to Cite
Rozhkova, T. O. (2022). HARMFULNESS FUSARIUM SP. FROM MYCOBIOTA OF WINTER WHEAT SEEDS. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 47(1), 119-124. https://doi.org/10.32845/agrobio.2022.1.16