CURRENT POSITION OF PHYTOPLANKTON SPECIES DIVERSITY AND WATER QUALITY ASSESSMENT OF KREMENCHUK RESERVOIR ACCORDING TO SAPROBITY INDEX

Keywords: phytoplankton, Kremenchuk Reservoir, number, biomass, species, “blooming” of water, saprobity index

Abstract

Phytoplankton is the basis of the autotrophic part of the aquatic ecosystem, the producer of organic substance and oxygen, which forms the energy basis of the diversity of aquatic organisms of higher trophic levels, the first part of trophic chains, the food source of invertebrates and fish at different levels of development. In the summer of 2020–2021, there were studied the taxonomic content, number and biomass of phytoplankton, and the saprobity index in the Kremenchuk Reservoir. To achieve the purpose in the process of research there used hydrobiological and statistical research methods. The phytoplankton of the reservoir in the summer of 2020–2021 was represented by the following divisions: Cyanophyta, Euglenophyta, Bacillariophyta, Chlorophyta. The leading place in the number of species had belonged to green algae, the intensity of development of which depended on water temperature, blue-green, diatoms were less important, and euglenae algae played a very insignificant role. In the summer of 2020, the average number of phytoplankton in the Kremenchug reservoir in the studied areas was 12,427 thousand cells per liter at a biomass of 1,463 mg/dm3, and in the summer period of 2021 made 28099 thousand cells per liter at a biomass of 2,266 mg/dm3. Researches in the summer of 2020 showed that the basis of the number (74 %) and biomass (35 %) of phytoplankton was formed by cyanobacteria (blue-green algae) and diatoms, which in small numbers (7 %) formed 44 % of the total biomass of algae, so in summer 2021 a similar picture was observed, the basis of the number (93 %) and biomass (54 %) of phytoplankton was also formed by cyanobacteria (blue-green algae) and diatoms, which at a small number (2 %) formed 29 % of the total biomass of algae. In the summer of 2020, green algae were less developed in the reservoir, forming 19 % of the total number and 17 % of the algae biomass, and in the summer of 2021, they formed only 5 % of the total number and 15 % of the algae biomass. Euglenate algae played a much smaller role in the formation of phytoplankton number and biomass both in the researches in the summer of 2020 (0.1 and 3.2 %, respectively) and in 2021 (0.1 and 1.6 %, respectively). According to the leading indicator species of saprobity, the water quality of the Kremenchuk Reservoir belongs to the ß-mesosaprobic zone in all researched areas.

References

1. Arsan, O. M., Davydov, O. A., Diachenko, T. M. ta in. (2006). Metody hidroekolohichnykh doslidzhen poverkhnevykh vod [Methods of hydroecological research of surface waters]; za red. V. D. Romanenka; NAN Ukrainy. In-t hidrobiolohii. Vyd-vo «Lohos», Kiev, 408 (in Ukrainian).
2. Bortolini, J. C., da Silva, P. R. L., Baumgartner, G., & Bueno, N. C. (2018). Response to environmental, spatial, and temporal mechanisms of the phytoplankton metacommunity: comparing ecological approaches in subtropical reservoirs. In Hydrobiologia, 830(1), 45–61. Springer Science and Business Media LLC. doi: 10.1007/s10750-018-3849-8
3. Bukhtiyarova, L. M. (1999). Diatoms of Ukraine. Inland waters. Kyiv, 133.
4. Cardoso, A. S., Marwell, D. T. B., Sobral, M. do C. M., Melo, G. L. de, & Casé, M. C. C. (2016). Análise da presença do fitoplâncton em bacia integrante do Projeto de Integração do Rio São Francisco, região semiárida, Nordeste brasileiro. In Engenharia Sanitaria e Ambiental, 22(2), 261–269. FapUNIFESP (SciELO). doi: 10.1590/s1413-41522016146707
5. Denisova, A. I., Timchenko, V. M., Nahshina, E. P. i dr. Otv. red. Shevchenko M. A. (1989). Gidrologija i gidrohimija Dnepra i ego vodohranilishh [Hydrology and hydrochemistry of the Dnieper and its reservoirs]. AN USSR. Institut gidrobiologii. Nauk. dumka, Kiev, 216 (in Russian).
6. Francé, J., Varkitzi, I., Stanca, E., Cozzoli, F., Skejić, S., Ungaro, N., Vascotto, I., Mozetič, P., Ninčević Gladan, Ž., Assimakopoulou, G., Pavlidou, A., Zervoudaki, S., Pagou, K., & Basset, A. (2021). Large-scale testing of phytoplankton diversity indices for environmental assessment in Mediterranean sub-regions (Adriatic, Ionian and Aegean Seas). In Ecological Indicators, 126, 107630. Elsevier BV. doi: 10.1016/j.ecolind.2021.107630
7. Grebin, V. V, Khilchevsky, V. K, Stashuk, V. A, Chunaryov, O. V, & Yaroshevich, O. E (2014). Water Fund of Ukraine. Artificial reservoirs. Reservoirs and ponds. Interpress LTD Kiev, 163(1).
8. Hu, R., Duan, X., Peng, L., Han, B., & Naselli-Flores, L. (2017). Phytoplankton assemblages in a complex system of interconnected reservoirs: the role of water transport in dispersal. In Hydrobiologia (Vol. 800, Issue 1, pp. 17–30). Springer Science and Business Media LLC. doi: 10.1007/s10750-017-3146-y
9. Khyzhniak, M. I., Rudyk-Leuska, N. Y., Yevtushenko, N. Y., Leuskyi, M. V., Dudnyk, S. V., Danchuk, O. V., Dumych, O. Y. (2020). Development and structure of phytoplankton in the middle part of Kremenchug reservoir. Ukrainian Journal of Ecology, 10(4), 132–136. doi: 10.15421/2020_180
10. Kondratieva, N. V. (1968). Vyznachnyk prisnovodnykh vodorostei Ukrainskoi RSR. Vyp. 2. Syno-zeleni vodorosti – Cyanophyta. Klas Hormohoniievi – Hogmogoniophyceae [Determinant of freshwater algae of the Ukrainian SSR.
edit. 2. Blue-green algae – Cyanophyta. Class Hormogonium – Hogmogoniophyceae]. Kiev: Nauk. dumka, 524 s (in Ukrainian).
11. Korshykov, O. A. (1938). Vyznachnyk prisnovodnykh vodorostei Ukrainskoi RSR. Vyp. 4. [Determinant of freshwater algae of the Ukrainian SSR. edit. 4]. Vyd-vo Akad. nauk URSR, Kiev, 184 (in Ukrainian).
12. Krishnamurthy, T., Carmichael, W. W., & Sarver, E. W. (1986). Toxic peptides from freshwater cyanobacteria (bluegreen algae). I. Isolation, purification and characterization of peptides from Microcystis aeruginosa and Anabaena flosaquae. In Toxicon, 24(9), 865–873. Elsevier BV. doi: 10.1016/0041-0101(86)90087-5
13. Kruzhylina, S. V. (2005). Zhyvlennia strokatoho tovstolobyka (Aristichthys nobilis (Rich.)) v ponyzzi Kremenchutskoho vodoskhovyshcha [Feeding of the Bighead carp (Aristichthys nobilis (Rich.)) In the lower part of the Kremenchuk Reservoir]. Ryb. hosp., 64, 116–111 (in Ukrainian).
14. Kruzhylina, S. V. (2010). Bahatorichna dynamika kilkisnoho rozvytku fitoplanktonu Kremenchutskoho vodoskhovyshcha ta yoho strukturni pokaznyky [Perennial dynamics of quantitative development of phytoplankton of Kremenchug reservoir and its structural indicators]. Rybohospodarska nauka Ukrainy, 3, 14–19 (in Ukrainian).
15. Li, Y., Meng, J., Zhang, C., Ji, S., Kong, Q., Wang, R., & Liu, J. (2020). Bottom-up and top-down effects on phytoplankton communities in two freshwater lakes. In X. Guo (Ed.), PLOS ONE, 15(4), e0231357. Public Library of Science (PLoS). doi: 10.1371/journal.pone.0231357
16. Liu, B., & Stevenson, R. J. (2017). Improving assessment accuracy for lake biological condition by classifying 263–271. Elsevier BV. doi: 0.1016/j.scitotenv.2017.07.152
17. Lv, J., Wu, H., & Chen, M. (2011). Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. In Limnologica, 41(1), 48–56. Elsevier BV. doi: 10.1016/j.limno.2010.03.003
18. Ma, W.-X., Huang, T.-L., Li, X., Zhang, H.-H., & Ju, T. (2015). Impact of short-term climate variation and hydrology change on thermal structure and water quality of a canyon-shaped, stratified reservoir. In Environmental Science and Pollution Research, 22(23), 18372–18380. Springer Science and Business Media LLC. doi: 10.1007/s11356-015-4764-4
19. Mishra, P., Garg, V., & Dutt, K. (2019). Seasonal dynamics of phytoplankton population and water quality in Bidoli reservoir. In Environmental Monitoring and Assessment (Vol. 191, Issue 3). Springer Science and Business Media LLC. doi: 10.1007/s10661-019-7185-x
20. Nikolenko, Y., & Fedonenko, O. (2021). Seasonal dynamics of phytoplankton indicators of the Zaporizhzhia (Dnipro) reservoir phytoplankton of the Zaporozhye reservoir. Ukrainian Journal of Ecology, 121–128. doi: 10.15421/2021_249
21. Oberholster, P., Botha, A.-M., & Grobbelaar, J. (2003). Microcystis aeruginosa: source of toxic microcystins in drinking water. In African Journal of Biotechnology, 3(3), 159–168. Academic Journals. doi: 10.5897/ajb2004.000-2029
22. Oleksiv, I.T. (1992). Pokaznyky yakosti pryrodnykh vod z ekolohichnykh pozytsii [Natural water quality indicators from ecological points]. Svit, Lviv, 232 (in Ukrainian).
23. Pantle F., Buck H. (1955). Die biologische Uberwachung der Gewasser und die Darstellung der Ergebnisse. Gasund Wasserfach. Bd 96, 18. 604.
24. Prijmachenko, A. D. (1981). Fitoplankton i pervichnaja produkcija Dnepra i Dneprovskih vodohranilishh [Phytoplankton and primary products of the Dnieper and Dnieper reservoirs]. Kiev: Nauk. dumka, 271 s (in Russian).
25. Rasconi, S., Winter, K., & Kainz, M. J. (2017). Temperature increase and fluctuation induce phytoplankton biodiversity loss – Evidence from a multi-seasonal mesocosm experiment. In Ecology and Evolution, 7(9), 2936–2946. Wiley. doi: 10.1002/ece3.2889
26. Rudyk-Leuska, N. Ya., Yevtushenko, N. Yu., Khyzhniak, M. I., Leuskyi, M. V. Kononenko, R. V., Tson, N. I., Dumyc, O. Y. (2020). Influence of temperature on the aquatic biota. Ukrainian Journal of Ecology, 10(3), 102–105. doi: 10.15421/2020_140
27. Rudyk-Leuska, N. Ya. (2020). Reflection of climate change on the temperature conditions of the middle section of the Kremenchug reservoir / N. Ya. Rudyk-Leuska, N. Yu. Yevtushenko, M. I. Khyzhniak, M. V. Leuskyi, Tson N. І., O. Y. Dumych / VII International Internet Conference «The world during a pandemic: new challenges and threats», August 18–19. Vancouver, Canada. p. 82–86. URL: http://el-conf.com.ua/wp-content/uploads/2020/09/%D0%9A%D0%B0%D0%BD%D0%B0%D0%B4%D0%B0%D1%81%D0%B0%D0%B9%D1%82.pdf
28. Shcherbak, V. I. (2002). Metody doslidzhen fitoplanktonu. Metodychni osnovy hidrobiolohichnykh doslidzhen vodnykh ecosystem [Phytoplankton research methods. Methodical bases of hydrobiological researches of aquatic ecosystems]. Kiev, 41–47 (in Ukrainian).
29. Shcherbak, V. I. (1999). Phytoplancton as a Model Object of Evaluating the Influence of Power Complexes on Water Ecosystems / V. I. Shcherbak. Engineering Simulation, 16, 513–519.
30. Sherstiuk, V. V. (1966). Do pytannia pro rol vodorostei ta vyshchoi vodnoi roslynnosti u zhyvlenni deiakykh ryb verkhnoi dilianky Kremenchutskoho vodoimyshcha [To the role of algae and higher aquatic vegetation in the nutrition of some fish in the upper part of the Kremenchuk reservoir]. Biolohiia i morfolohiia ryb ta sanitarno-biolohichnyi rezhym prisnykh vod Ukrainy. Nauk. dumka, Kiev, 118–120 (in Ukrainian).
31. Shevchuk, S. A., Vishnevsky, V. I., Shevchenko, I. A. & Kozytsky, O. M. (2019). Research of water bodies of Ukraine using remote sensing data of the Earth. Recruitment and water management, (2), 146–156.
32. Shherbak, V. I. (1989). Fitoplankton Kremenchugskogo vodohranilishha. Rastitel’nost’ i bakterial’noe naselenie Dnepra i ego vodohranilishh [Phytoplankton of the Kremenchuk reservoir. Vegetation and bacterial population of the Dnieper and its reservoirs]. Nauk. dumka, Kiev, 87–92 (in Ukrainian).
33. Shherbak, V. I., Semenjuk, N. E., Rudik-Leuskaja, N. Ja. (2014). Akvalandshaftnoe i biologicheskoe raznoobrazie Nacional’nogo prirodnogo parka «Nizhnesul’skij», Ukraina [Aqualandscape and biological diversity of the Nizhnesulsky National Nature Park, Ukraine]. Pod red. V. I. Shherbaka. Fitosociocentr, Kiev, 266 (in Russian).
34. Sirenko, L. A., & Kirpenko, Yu. A. (2000). Biologically Active Metabolites of Blue-Green Algae and Their Role in Epidemiology. In Hydrobiological Journal, 36(5), 14. Begell House. doi: 10.1615/hydrobj.v36.i5.110
35. Slǎdećek, V. (1973). System of water quality from the biological point of view. Ergebnisse der Limnologie, 7(1), 1–128.
36. Stotts, R. R., Namikoshi, M., Haschek, W. M., Rinehart, K. L., Carmichael, W. W., Dahlem, A. M., & Beasley, V. R. (1993). Structural modifications imparting reduced toxicity in microcystins from Microcystis spp. In Toxicon, 31(6), 783–789. Elsevier BV. doi: 10.1016/0041-0101(93)90384-u
37. Sukhodol’skaya, I. L., Manturova, O. V., & Griuk, I. B. (2015). Phytoplankton of Small Rivers of the Rivne Region (Ukraine) and Relation of its Quantitative Parameters with Nutrients Content. In Hydrobiological Journal, 51(5), 50–61. Begell House. doi: 10.1615/hydrobj.v51.i5.50
38. Tarasova, O. M. (1983). Fitoplankton vodohranilishh dneprovskogo kaskada [Phytoplankton of reservoirs of the Dnieper cascade]. Ryb. hoz-vo, 37, 52–56 (in Russian).
39. Tarasova, O. M., Shapovalov, M. Z., Mushak, P. A. (1980). K voprosu o pitanii belyh tolstolobikov sinezelenymi vodorosljami [To the question of nutrition of white silver carps with blue-green algae]. Ryb. hoz-vo, 30, 75–77 (in Russian).
40. Topachevskij, A. V., Masjuk, I. P. (1984). Presnovodnye vodorosli Ukrainskoj SSR [Freshwater algae of the Ukrainian SSR]. Pod red. M. F. Makarovicha. Kiev: Vishha shkola, 336 (in Russian).
41. Vallina, S. M., Cermeno, P., Dutkiewicz, S., Loreau, M., & Montoya, J. M. (2017). Phytoplankton functional diversity increases ecosystem productivity and stability. In Ecological Modelling, 361, 184–196. Elsevier BV. doi: 10.1016/j.ecolmodel.2017.06.020
42. Wang, S., Qian, X., Han, B.-P., Luo, L.-C., & Hamilton, D. P. (2012). Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China. In Water Research, 46(8), 2591–2604. Elsevier BV. doi: 10.1016/j.watres.2012.02.014
43. Yakovenko, V., Melnik, S., & Fedonenko, E. (2017). Species Composition, Seasonal Dynamics and Distribution of Phytoplankton of the Zaporizke Reservoir. In International Letters of Natural Sciences, 62, 1–10. SciPress Ltd. doi: 10.18052/www.scipress.com/ilns.62.1
44. Yan, M., Chen, S., Huang, T., Li, B., Li, N., Liu, K., Zong, R., Miao, Y., & Huang, X. (2020). Community Compositions of Phytoplankton and Eukaryotes during the Mixing Periods of a Drinking Water Reservoir: Dynamics and Interactions. In International Journal of Environmental Research and Public Health, 17(4), 1128. MDPI AG. doi: 10.3390/ijerph17041128
45. Yang, M., Xia, J., Cai, W., Zhou, Z., Yang, L., Zhu, X., & Li, C. (2020). Seasonal and spatial distributions of morphofunctional phytoplankton groups and the role of environmental factors in a subtropical river-type reservoir. In Water Science and Technology, 82(11), 2316–2330. IWA Publishing. doi: 10.2166/wst.2020.489
46. Zadorozhna, G. M. & Shcherbak, V. I. (2016). Effect of solar radiation and water temperature on development of phytoplankton in the Kaniv reservoir. Hydrobiological Journal. Kyiv, 53 (1). Access mode: http://nbuv.gov.ua/UJRN/gbj_2016_52_5_4
Published
2022-12-04
How to Cite
Rudyk-Leuska, N., Leuskyi, M., Makarenko, A., & Yevtushenko, N. (2022). CURRENT POSITION OF PHYTOPLANKTON SPECIES DIVERSITY AND WATER QUALITY ASSESSMENT OF KREMENCHUK RESERVOIR ACCORDING TO SAPROBITY INDEX. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 48(2), 139-147. https://doi.org/10.32845/agrobio.2022.2.19