THE EFFECT OF SEED TREATMENT WITH METABOLICALLY ACTIVE SUBSTANCES ON THE PHOTOSYNTHETIC PRODUCTIVITY OF COMMON WHEAT (TRITICUM AESTIVUM L.) SEEDLINGS UNDER SIMULATION OF WATER DEFICIT

Keywords: soft wheat, metabolically active substances, PEG 6000, assimilation surface area, chlorophyll a and b.

Abstract

Wheat one of the most important agricultural crops in the world, the production of which is important for mankind. In Ukraine, Triticum aestivum L. ranks first among grain crops. It occupies more than 6 million hectares, which is more than 22% of all grain crops. Among all the natural factors that negatively affect the physiological processes of growth and development of wheat and lead to a decrease in productivity, there is a water deficit caused by drought. Questions regarding the study of the drought resistance of grain crops are relevant, as they are focused on the study of plant reactions to water stress and the implementation of methods of increasing plant resistance to drought. One of these methods is the use of metabolically active substances that increase the resistance of grain crops to various adverse factors, including drought. Metabolically active substances are part of many growth stimulants and other preparations for plants. New properties of metabolically active substances and their prospects for further use are studied every year. The use of metabolically active substances makes it possible to better reveal the plant’s potential, increase stress resistance and, as a result, increase the productivity of agricultural crops. The article provides a comparative description of the influence of metabolically active substances and their combinations on the formation of the assimilation surface, the content of green photosynthetic pigments in common wheat seedlings under conditions of water deficit, simulated using PEG 6000. It was established that pretreatment of seeds with solutions of paraoxybenzoic acid (POBА), ubiquinone – 10, magnesium sulfate (MgSO4) and the combination of vitamin E + paraoxybenzoic acid (POBА) + methionine + magnesium sulfate (MgSO4) helps to increase the assimilation surface area of wheat seedlings by 17.7%, 16.5%, 16.2% and 12.1%, respectively, compared to the area of the assimilation surface of seedlings whose seeds were in conditions of water deficit, simulated using PEG 6000. Treatment of seeds with a solution of ubiquinone - 10 and a combination of vitamin E + ubiquinone – 10 stimulated the synthesis of chlorophyll in wheat leaves by 14.4% and 15.4%, respectively, compared to the group of plants whose seeds were germinated under conditions of slow water supply. Treatment of seeds with metabolically active substances contributes to the preservation of optimal hydration of tissues by increasing the xeromorphism of leaves and can be used as elements of the technology of growing grain crops in conditions of water deficit.

References

1. Ali, Q., Javed, M., Haider, M., Habib, N., Rizwan, M., Perveen, R., Ali, S., Alyemeni, M., El-Serehy, H. & Al-Misned, F. (2020) α-Tocopherol foliar spray and translocation mediates growth, photosynthetic pigments, nutrient uptake, and oxidative defense in Maize (Zea mays L.) under drought stress. Agronomy. Vоl. 10, No. 9, Р.1235.
2. Barkosky, R.R. & Einhellig, F.A. (2003) Allelopathic interference of plant water relationships by para-hydroxybenzoic acid. Botanical Bulletin of Academia Sinica., 44, 53–58
3. Chornyi, S.H. (2020). Osnovy ahronomichnoi khimii: navchalnyi posibnyk [Fundamentals of agronomic chemistry: a textbook]. MNAU, Mykolaiv, 284 (in Ukrainian)
4. Derzhavnyi reiestr sortiv roslyn, prydatnykh dlia poshyrennia v Ukraini na 2022 rik [State register of plant varieties suitable for dissemination in Ukraine] (2022) (Chynnyi vid 2022-09-08). Vyd. ofits. Kyiv. 526. (in Ukrainian)
5. Flexas, J. & Medrano, H. (2002) Energy dissipation in C3 plants under drought. Funct. Plant Biology, 29(10), 1209–1215.
6. Guo, W., Chen, S., Hussain, N., Cong, Y., Liang, Z. & Chen, K. (2015) Magnesium stress signaling in plant: just a beginning. Plant Signal Behav., 10(3), Article: e992287
7. Hildebrandt, T.M., Nunes-Nesi, A., Araújo, W.L. & Braun, H.P. (2015) Amino Acid Catabolism in Plants. Mol Plant. Vol 8(11). Р.1563–79.
8. Jia, P., Melnyk, A. & Zhang, Z. (2022). Differential adaptation of root and shoot to salt stress correlates with antioxidant capacity in mustard. Pakistan journal of botany, 54(6), 2001–2011 doi: 10.30848/PJB2022-6(32)
9. Jia, P., Melnyk, A., Li L., Kong, X., Dai, H., Zhang, Z. & Butenko, S. (2021). Effects of drought and rehydration on the growth and physiological features of mustard seedlings. Journal of Central European Agriculture, 22(4), 836–847 doi: 10.5513/JCEA01/22.4.3246.
10. Jia, P., Melnyk, A., Zhang, Z., Butenko, S. & Kolosok, V. (2021). Effects of seed pre-treatment with plant growth compound regulators on seedling growth under drought stress. Agraarteadus, 32(2), 251–256 doi: 10.15159/jas.21.35.Khayatnezhad, M. & Gholamin, R. (2012) The effect of drought stress on leaf chlorophyll contentand stress resistance in maize cultivars (Zea mays). African Journal of Microbiology Research, 6 (12), 2844–2848.
11. Kolupaiev, Yu.Ye. (2010) Osnovy fiziolohii stiikosti roslyn: Kurs lektsii [Basics of physiology of plant resistance: Course of lectures]. Kharkiv. 121 (in Ukrainian).
12. Koziuchko, A. & Havii, V. (2020) Efektyvnist vplyvu peredposivnoi obrobky nasinnia metabolichno aktyvnymy rechovynamy ta rehuliatorom rostu roslyn «vympel» na asymiliatsiini protsesy soi sortu annushka u fazi tsvitinnia Roslyn [The effectiveness of the influence of pre-sowing treatment of seeds with metabolically active substances and plant growth regulator «Pennant» on the assimilation processes of Annushka soybeans in the flowering phase of plants]. Zbirnyk naukovykh prats ΛΌHOΣ. Tom 2. 82–85. (in Ukrainian).
13. Koziuchko, A.H., Havii, V.M. & Kuchmenko, O.B. (2020) Vplyv peredposivnoi obrobky nasinnia metabolichno aktyvnymy rechovynamy na okremi fiziolohichni pokaznyky soi sortu Annushka ta yii produktyvnist [The effect of pre-sowing treatment of seeds with metabolically active substances on certain physiological indicators of Annushka soybean and its productivity]. Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu imeni Volodymyra Hnatiuka. Ser. Biolohiia. Ternopil : TNPU im. V. Hnatiuka, 1–2 (79), 84–90. doi: 10.25128/2078-2357.21.4.11 (in Ukrainian).
14. Liu, M. & Lu, S. (2016) Plastoquinone and Ubiquinone in Plants: Biosynthesis, Physiological Function and Metabolic Engineering. Front Plant Sci., 7, 1898.
15. Maltseva, N.M., Haievskyi, A.P. & Derevianko, K.Iu. (2011) Vplyv biolohichno aktyvnykh rechovyn ta yikh kompozytsii na vmist fotosyntetychnykh pihmentiv u lystkakh ozymoi pshenytsi v umovakh defitsytu fosforu [The influence of biologically active substances and their compositions on the content of photosynthetic pigments in winter wheat leaves under conditions of phosphorus deficiency]. Fyzyolohyia y byokhymyia kult. Rastenyi, 43(5), 403–411. (in Ukrainian).
16. Morhun, V.V., Hryhoriuk, I.P. & Nyzhnyk, T.P. (2002) Pihmentnyi fond khloroplastiv v lystkakh sortiv za umov posukhy ta obrobky polistymulinom K [The pigment fund of chloroplasts in the leaves of cultivars under conditions of drought and treatment with polystimulin K]. Naukovi zapysky Ternopil. ped. un-tu. Ser. Biolohiia, 3, 180–186. (in Ukrainian).
17. Nardi, S., Pizzeghello, D., Schiavon, M. & Ertani, A. (2016) Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. agric. (Piracicaba, Braz.), 73(1), 18–23
18. Palyvoda, Iu.M., Havii, V.M. & Kuchmenko, O.B. (2021) Fizioloho-biokhimichni pokaznyky prorostkiv pshenytsi miakoi (Triticum aestivum L.) pry modeliuvanni vodnoho defitsytu za dii metabolichno aktyvnykh spoluk [Physiological and biochemical indicators of common wheat seedlings (Triticum aestivum L.) in the simulation of water deficit under the action of metabolically active compounds]. Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu imeni Volodymyra Hnatiuka. Ser. Biolohiia. Ternopil: TNPU im. V. Hnatiuka, 3(81), 44–54. doi: 10.25128/2078-2357.21.3.7 (in Ukrainian).
19. Pochynok, Kh.N. (1976). Metody biokhimichnoho analizu Roslyn [Methods of biochemical analysis of plants]. Naukova dumka, Kyiv, 336 (in Ukrainian)
20. Pykalo, S.V., Demydov, O.A., Yurchenko, T.V., Prokopik, N.I. & Kharchenko, M.V. (2019) Porivnialna otsinka metodiv vyznachennia posukhostiikosti sortiv pshenytsi miakoi ozymoi [Comparative assessment of methods for determining drought tolerance of soft winter wheat varieties]. Science Rise: Biological Science, 4, 19, 17–21 (in Ukrainian).
21. Sattler, S.E., Gilliland, L.U., Magallanes-Lundback, M., Pollard, M. & Della Penna, D. (2004). Vitamin E Is Essential for Seed Longevity and for Preventing Lipid Peroxidation during Germination. The Plant Cell., 16, 1419–1432.
22. Seldymyrova, O.A. (2019) Testyrovanye selektyvnыkh ahentov dlia otsenky yarovoi miahkoi pshenytsы na ustoichyvost k zasukhe [Testing of selective agents for evaluation of spring soft wheat for drought resistance]. Ekobyotekh, 2(1), 51–62 (in Russian).
23. Shadchyna, T.M., Huliaiev, B.I. & Kirizii, D.A. (2006) Rehuliatsiia fotosyntezu i produktyvnist roslyn: fiziolohichni ta ekolohichni aspekty [Regulation of photosynthesis and plant productivity: physiological and ecological aspects]. Fitosotsiotsentr, Kyiv, 384 (in Ukrainian).
24. Shin, Y.K., Bhandari, S.R., Jo, J.S., Song, J.W. & Lee, J.G. (2021) Effect of Drought Stress on Chlorophyll Fluorescence Parameters, Phytochemical Contents, and Antioxidant Activities in Lettuce Seedlings. Horticulturae, 7, 238
25. Shmatko, Y.H., Hryhoriuk, Y.A. & Shvedova, O.E. (1989) Ustoichyvost rastenyi k vodnomu y temperaturnomu stressam [Resistance of plants to water and temperature stress]. Nauk. dumka, Kyev, 224 (in Russian).
26. Sokolovska-Serhiienko, O.H. & Stasyk, O.O. (2008) Osoblyvosti reaktsii fotosyntetychnoho aparatu kontrastnykh za posukhostiikistiu sortiv ozymoi pshenytsi na gruntovu posukhu [Peculiarities of the reaction of the photosynthetic apparatus of winter wheat varieties contrasting in terms of drought resistance to soil drought]. Visnyk. Ukr. tov-va henetykiv i selektsioneriv, 6(1), 137–144 (in Ukrainian).
27. Terek, O.I. (2007). Rist roslyn: navchalnyi posibnyk [Plant growth: a study guide]. Vyd-vo Lvivskoho natsionalnoho universytetu imeni Ivana Franka, Lviv, 248 (in Ukrainian).
28. Yeshchenko, V.O., Kopytko, P.H. & Opryshko V.P. (2005) Osnovy naukovykh doslidzhen v ahronomii [Fundamentals of scientific research in agronomy]. Diia, Kyiv, 288 (in Ukrainian).
29. Zabolotna, A.V., Zabolotnyi, O.I., Rozborska, L.V., Zhyliak, I.D. & Datsenko, A.A.. (2021) Vmist pihmentiv i chysta produktyvnist fotosyntezu kukurudzy za vykorystannia rehuliatoriv rostu roslyn [Pigment content and net photosynthetic productivity of maize using plant growth regulators]. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriia «Ahronomiia i biolohiia», 4 (46), 9–15. (in Ukrainian).
30. Zaefyzadeh, M., Quliyev, R.A., Babayeva, S.M. & Abbasov, M.A.( 2009) The Effect of the Interaction between Genotypes and Drought Stress on the Superoxide Dismutase and Chlorophyll Content in Durum Wheat Landraces. Turk J Biol., 33, 1–7.
31. Zhuk, O.I. (2011) Formuvannia adaptyvnoi vidpovidi roslyn na defitsyt vody.[Formation of adaptive response of plants to water deficit]. Fyzyolohyia y byokhymyia kult. Rastenyi, 43(1), 26–37 (in Ukrainian).
32. Zlobin, Yu.A. (2004) Kurs fiziolohii i biokhimii roslyn: pidruchnyk [Course of physiology and biochemistry of plants: textbook]. VTD «Universytetska knyha», Sumy, 464. (in Ukrainian).
Published
2023-01-20
How to Cite
Palivoda, Y., & Haviy, V. (2023). THE EFFECT OF SEED TREATMENT WITH METABOLICALLY ACTIVE SUBSTANCES ON THE PHOTOSYNTHETIC PRODUCTIVITY OF COMMON WHEAT (TRITICUM AESTIVUM L.) SEEDLINGS UNDER SIMULATION OF WATER DEFICIT. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 49(3), 49-55. https://doi.org/10.32845/agrobio.2022.3.7