THE EFFECT OF PRETREATMENT OF SEEDS WITH METABOLICALLY ACTIVE SUBSTANCES ON THE FORMATION OF THE ROOT SYSTEM AND THE WATER POTENTIAL OF THE ROOTS OF COMMON WHEAT SEEDLINGS (TRITICUM AESTIVUM L.) UNDER CONDITIONS OF WATER DEFICIT
Abstract
Wheat, one of the most important agricultural crops in the world, the production of which is important for humanity. Unfavorable environmental conditions negatively affect the physiological processes of growth and development of wheat and lead to a decrease in productivity. One of the most acute environmental factors is water scarcity caused by drought. Plants develop various complex mechanisms of resistance and adaptation to water deficit, including physiological responses. The water potential of plants is maintained at a high level due to a well-formed root system. Questions regarding the study of drought resistance of grain crops are relevant, as they are focused on the study of plant reactions to water stress and the implementation of methods to increase plant resistance to drought. One of these methods is the use of metabolically active substances. The article provides a comparative description of the influence of metabolically active substances and their combinations on the mechanisms of the formation of a powerful root system and the reduction of the water potential of the roots of common wheat seedlings (Triticum aestivum L.) in conditions of water deficit, simulated with the help of PEG 6000. It was established that pretreatment of seeds with solutions of ubiquinone-10 and magnesium sulfate (MgSO4), combinations: vitamin E + methionine + paraoxybenzoic acid (POBА), vitamin E + methionine + paraoxybenzoic acid (POBА) + magnesium sulfate (MgSO4) stimulated the development of the root system by 16.9%, 8.9%, 14.2%, and 10.2%, respectively, compared to seeds that were in conditions of water deficit simulated using PEG 6000. Treatment of wheat seeds of T. aestivum with a solution of vitamin E and a combination of vitamin E + methionin + paraoxybenzoic acid (POBА) + magnesium sulfate (MgSO4) increases the water-holding capacity of the roots in conditions of slow water supply. Treatment of seeds with metabolically active substances helps to increase the drought resistance of common wheat and can be used as elements of the technology of growing grain crops in conditions of water deficit.
References
2. Ali, Q., Javed, M., Haider, M., Habib, N., Rizwan, M., Perveen, R., Ali, S., Alyemeni, M., El-Serehy, H. & Al-Misned, F. (2020) α-Tocopherol foliar spray and translocation mediates growth, photosynthetic pigments, nutrient uptake, and oxidative defense in Maize (Zea mays L.) under drought stress. Agronomy, 10 (9), 1235 doi: 10.3390/agronomy10091235
3. Ansari O., Azadi M., Sharif-Zadeh F. & Younesi E. (2013) Effect of hormone priming on germination characteristics and enzyme activity of Mountain rye (Secale montanum) seeds under drought stress conditions. Journal of Stress Physiology & Biochemistry, 9, 3. 61–71
. Aslam M., Maqbool M.A. & Cengiz R. (2015). Drought Stress in Maize (Zea mays L.). SpringerBriefs in Agriculture . DOI:10.1007/978-3-319-25442-5_3.
5. Avhustynovych M. & Chumak A. (2018) Aminokysloty: mif chy realnist [Amino acids: myth or reality]. Propozytsiia: Holovnyi zhurnal z pytan ahrobiznesu. 12 (in Ukrainian).
6. Barkosky, R.R. & Einhellig, F.A. (2003) Allelopathic interference of plant water relationships by para-hydroxybenzoic acid. Botanical Bulletin of Academia Sinica., 44, 53–58
7. Bychkova O. & Khlebova L. (2015) Physiological assessment of drought resistance in spring Durum wheat. Acta Biologica Sibirica, 1(1-2), 107–117. (in English). doi:10.14258/abs.v1i1-2.853
8. Chaichi M., Sanjarian F., Razavi K. & Gonzalez-Hernandez J. L. (2019) Analysis of transcriptional responses in root tissue of bread wheat landrace (Triticum aestivum L.) reveals drought avoidance mechanisms under water scarcity. PloS one, 14(3) doi: 10.1371/journal.pone.0212671
9. Derzhavnyi reiestr sortiv roslyn, prydatnykh dlia poshyrennia v Ukraini na 2022 rik [State register of plant varieties suitable for dissemination in Ukraine] (2022) (Chynnyi vid 2022-09-08). Vyd. ofits. Kyiv. 526 (in Ukrainian).
10. Foyer C.H. & Noctor G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell. 2005. 17(7). P. 1866–1875. doi: 10.1105/tpc.105.033589
11. Jia, P., Melnyk, A., Zhang, Z., Butenko, S. & Kolosok, V. (2021). Effects of seed pre-treatment with plant growth compound regulators on seedling growth under drought stress. Agraarteadus, 32(2), 251–256 doi:10.15159/jas.21.35
12. Khoroshun V. (2023). TOP-10 krain vyrobnykiv pshenytsi v 2022/23 MR. Latifundist.com. (data zvernennia 12 chervnia 2023) https://latifundist.com/rating/top-10-krayin-virobnikiv-pshenitsi-v-2022-23-mr
13. Kolodka A. & Tverdokhlib O. (2022) Mekhanizm posukhostiikosti u Roslyn [Mechanism of drought resistance in plants]. V mizhnarodna konferentsiia molodykh uchenykh: Kharkivskyi pryrodnychyi forum (19-20 travnia 2022 r., m. Kharkiv): zbirnyk tez. Kharkiv: KhNPU imeni H. S. Skovorody, 50–54 (in Ukrainian).
14. Koziuchko, A. & Havii, V. (2020) Efektyvnist vplyvu peredposivnoi obrobky nasinnia metabolichno aktyvnymy rechovynamy ta rehuliatorom rostu roslyn «Vympel» na asymiliatsiini protsesy soi sortu Annushka u fazi tsvitinnia Roslyn [The effectiveness of the influence of pre-sowing treatment of seeds with metabolically active substances and plant growth regulator "Vympel" on the assimilation processes of Annushka soybeans in the flowering phase of plants]. Zbirnyk naukovykh prats ΛΌHOΣ, 2. 82–85 (in Ukrainian).
15. Koziuchko, A.H., Havii, V.M. & Kuchmenko, O.B. (2020) Vplyv peredposivnoi obrobky nasinnia metabolichno aktyvnymy rechovynamy na okremi fiziolohichni pokaznyky soi sortu Annushka ta yii produktyvnist [The effect of pre-sowing treatment of seeds with metabolically active substances on certain physiological indicators of Annushka soybean and its productivity]. Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu imeni Volodymyra Hnatiuka. Ser. Biolohiia. Ternopil: TNPU im. V. Hnatiuka, 1–2 (79), 84–90 (in Ukrainian). doi: 10.25128/2078-2357.20.1-2.12
16. Kurylenko, A., Kurylenko, O., Kuchmenko O. & Havii V. (2021) Vplyv peredposivnoi obrobky nasinnia kompozytsiiamy metabolichno aktyvnykh rechovyn na morfometrychni pokaznyky ozymoho zhyta v umovakh pivdnia Polissia Ukrainy. [Influence of presowing treatment of seeds with compositions of metabolically active substances on morphometric indexes of winter rye]. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriia: «Ahronomiia i biolohiia». 4(46). 25–32. (in Ukrainian). doi: 10.32845/agrobio.2021.4.4.
17. Lisovytskyi V., & Kuchmenko O. (2020) Vplyv metabolichno-aktyvnykh rechovyn na okremi fizioloho-biokhimichni pokaznyky rostu i rozvytku ohirkiv sortu Nizhynskyi. Naukovi zapysky NaUKMA. Biolohiia i ekolohiia. 3. 35–42 (in Ukrainian). doi:10.18523/2617-4529.2020.3.35-42
18. Liu, M. & Lu, S. (2016) Plastoquinone and ubiquinone in plants: Biosynthesis, physiological function and metabolic engineering. Front Plant Sci., 7, 1898 (in English). doi:10.3389/fpls.2016.01898
19. Maltseva, N.M., Haievskyi, A.P. & Derevianko, K.Iu. (2011) Vplyv biolohichno aktyvnykh rechovyn ta yikh kompozytsii na vmist fotosyntetychnykh pihmentiv u lystkakh ozymoi pshenytsi v umovakh defitsytu fosforu [The influence of biologically active substances and their compositions on the content of photosynthetic pigments in winter wheat leaves under conditions of phosphorus deficiency]. Fyzyolohyia y byokhymyia kult. roslyn, 43(5), 403–411 (in Ukrainian).
20. Mashevska A. (2015) Fiziolohiia ta biokhimiia roslyn: Materialy dlia opratsiuvannia temy «Vodnyi rezhym roslyn» z kursu «Fiziolohiia ta biokhimiia roslyn»[Physiology and biochemistry of plants materials for processing the topic "water regime of plants" from the course "Physiology and biochemistry of plants"]. Lutsk : Vezha-Druk. 40. (in Ukrainian)
21. Moskalets T. & Rybalchenko V. (2015) Morfo-fiziolohichni ta molekuliarno-henetychni oznaky kseromorfnosti Triticum aestivum L. [Morpho-physiological and molecular-genetic characters xeromorphs of Triticum aestivum L.]. Naukovyi visnyk Chernivetskoho universytetu. Biolohiia (Biolohichni systemy). 7 (1), 45–52 (in Ukrainian).
22. Moumita, Mahmud J., Biswas P., Nahar K., Fujita M. & Hasanuzzaman M. (2019) Exogenous application of gibberellic acid mitigates drought-induced damage in spring wheat. Acta Agrobotanica. 72(2), 1776 doi:10.5586/aa.1776
23. Oguz, M., Aycan, M.,Oguz, E., Poyraz, I. & Yildiz, M. (2022) Drought stress tolerance in plants: Interplay of molecular, biochemical and physiological responses in important development stages. Physiologia. 2, 180–197 doi:10.3390/physiologia2040015
24. Oo, A.T., van Huylenbroeck, G. & Speelman, S. (2020) Measuring the economic impact of climate change on crop production in the dry zone of myanmar: A ricardian approach. Climate. 8, 9 doi:10.3390/cli8010009
25. Orliuk A. & Usyk L. (2005) Morfolohichni i fizioloho-biokhimichni pokaznyky posukhostiikosti Triticum aestivum L. [Morphological and physiological and biochemical indicators drought resistance of Triticum aestivum L.]. Chorn. Botan. Zhurn. 1. 90–98. (in Ukrainian)
26. Palyvoda, Iu.M., Havii, V.M. & Kuchmenko, O.B. (2021) Fizioloho-biokhimichni pokaznyky prorostkiv pshenytsi miakoi (Triticum aestivum L.) pry modeliuvanni vodnoho defitsytu za dii metabolichno aktyvnykh spoluk [Physiological and biochemical indicators of common wheat seedlings (Triticum aestivum L.) in the simulation of water deficit under the action of metabolically active compounds]. Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu imeni Volodymyra Hnatiuka. Ser. Biolohiia. Ternopil: TNPU im. V. Hnatiuka, 3(81), 44–54 (in Ukrainian). doi: 10.25128/2078-2357.21.3.7
27. Sattler, S.E., Gilliland, L.U., Magallanes-Lundback, M., Pollard, M. & Della Penna, D. (2004). Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. The Plant Cell., 16, 1419–1432.
28. Seleiman, M.F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H., & Battaglia, M. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10, 259 doi:10.3390/plants10020259
29. Szabados L. & Savoure A. (2010) Proline: a multifunctional amino acid. Trends in Plant Science, 15 (2). 89–97 doi: 10.1016/j.tplants.2009.11.009
30. Yeshchenko, V.O., Kopytko, P.H. & Opryshko V.P. (2014). Osnovy naukovykh doslidzhen v ahronomii [Fundamentals of scientific research in agronomy]. Kyiv, 332 (in Ukrainian).
31. Zaimenko N., Didyk N., Dziuba O., Zakrasov O., Rositska N. & Viter A. (2013). Induktsiia zakhysnykh reaktsii na posukhu u roslyn kukurudzy analtsymom za riznykh zvolozhenosti y typu gruntu [Induction of defense responses to drought in maize plants by analcime at different humidities and soil type]. Fyzyolohyia y byokhymyia kult. roslyn, 45 (1). 35–4. (in Ukrainian).
32. Zhuk, O. (2011). Formuvannia adaptyvnoi vidpovidi roslyn na defitsyt vody [Formation of adaptive response of plants to water deficit]. Fyzyolohyia y byokhymyia kult. roslyn, 43(1), 26–37 (in Ukrainian).