This article mainly reviews the immunomodulatory mechanism of action Astragalus polysaccharide and its effectiveness in poultry, and provides a theoretical basis for the application and research of Astragalus polysaccharide in poultry breeding. Astragalus polysaccharide is one of the main components of Chinese traditional medicine. However in modern time Astragalus polysaccharide is a new type of feed additive that can replace antibiotics in animal husbandry. Taking into account the current situation in modern poultry farming with meat quality, the use of this preparation can significantly affect both the quality and the price of poultry meat. In recent years, there have been more and more studies on Astragalus polysaccharide, and some of the components and biological effects of Astragalus polysaccharide have gradually been recognized by researchers. As a natural plant feed additive, Astragalus polysaccharide can significantly promote the body's non-specific immunity and specific immunity, and improve the body's resistance without causing drug resistance and drug residues. However, there are relatively few systematic studies and related mechanisms on the application of Astragalus polysaccharide in animal production.

Keywords: Astragalus polysaccharide, immune regulation, breeding, meat, poultry, broiler chickens.

DOI: https://doi.org/10.32845/bsnau.lvst.2021.1.16

Antibiotics have been used as feed additives in the feed industry for more than 40 years. They have played a positive role in preventing animal diseases, promoting animal growth, increasing the output of livestock products and improving the efficiency of the breeding industry. However due to various side effects (such as drug residues, drug resistance, and environmental pollution), many animal husbandry scientists was noted their negative impact. For this reason, many countries in the world prohibit the use of antibiotics in feed. Seeking green alternatives to antibiotics has become a hot spot in today's research. Astragalus is the dried root of Astragalus mongolicus (Astragalus membranaceus (Fisch) Bge. var. Mongholicus (Bge.) and Astragalus membranaceus (Astragalus membranaceus (Fisch) Bge) in the legume Astragalus genus has become an object of study by many scientists in recent years. It is one of the main components of Chinese traditional medicine. Astragalus contains polysaccharides, proteins, alkaloids, amino acids, flavonoids, trace elements and many other active substances. Astragalus polysaccharides (APS) is extracted from Astragalus, and is the main biologically active component in Astragalus. Many studies have shown that APS has the functions of enhancing animal immunity and promoting animal growth [1]. Therefore, it has been widely used in poultry production in present time.

1. Physical and chemical properties and extraction methods of Astragalus polysaccharides

Astragalus is a water-soluble neutral heteropolysaccharide [2], it is mainly composed of dextran, neutral polysaccharide, heteropolysaccharide, and acid polysaccharide [3]. The relative molecular mass is 59400, its physical properties are brown-yellow powder with slightly sweet taste and water absorption, APS aqueous solution can make iodine liquid blue. The melting point of APS is higher than 200°C, each component has a large specific optical rotation value, which is D type single Sugars are mainly composed of α-glycosidic bonds, UV spectra shows the characteristic absorption peaks of polysaccharides.

The common used extraction methods of Astragalus include: water extraction, alkaline alcohol extraction, ultrasonic extraction, microwave extraction, etc., among the named ultrasonic extraction of APS is the most common and effective [4]. The main reason is that the cavitation effect of ultrasound accelerates the rapid leaching of the effective ingredients of plants. In addition, the secondary effect of ultrasound can also accelerate the release of the effective ingredients and can be fully mixed with the solvent, which is also conducive to extraction [5].

2. The immune regulation mechanism of Astragalus polysaccharides

The immune regulation mechanism of Astragalus is generally considered to have these aspects: promote the development of animal immune organs, provide more immunocompetent cells to activate immune cells (T cells, B cells, K cells, NK cells, etc.), activate macrophage functions. Also enhance its phagocytosis, processing and delivery of antigens, promote the secretion and activity of cytokines, promote and regulate the production of complement, antibodies and lysozyme [5], activate...
B lymphocytes and T lymphocytes, and stimulate NK cells to proliferate, enhance the function of dendritic cells, improve humoral immunity and cellular immune response [6].

2.1. The effect of Astragalus polysaccharides on immune organs

Animal immune organs are composed of central and peripheral immune organs. The central immune organs include bone marrow, thymus, and poultry bursa of fabric. The main role is to lead the production, proliferation, differentiation and maturation of immunocompetent cells, and regulate the development of peripheral lymphatic organs and systemic immune function. Peripheral immune organs include lymph nodes and spleen, etc., it provides a place for immune cell aggregation and immune response. The development of immune organs will directly affect to the body's immunity. Many studies have shown that adding APS to poultry diets can effectively increase the quality of immune organs, improve organ index, and promote the development of some organs [7,8,9,10]. In addition, researchers such as Gao Xu, Li Lifen and Liu Binyu studied the effects of different concentrations of APS on the immune function of mice, and the results showed that with the increase of APS concentration, the weight of mouse thymus and spleen increased significantly [11]. Researcher Wang Junli found that the effect of APS on organs is affected by gender and growth stage [8].

2.2. The effect of Astragalus polysaccharides on immune cells

Immune cells include monocytes, macrophages, neutrophils and lymphocytes, etc., whose role is to carry out specific or non-specific immune responses. Researcher Meng Xianrong reported that APS can promote the function of mononuclear macrophages, enhance the phagocytosis of macrophages, and increase the activity of NK cells [12]. The mononuclear macrophage system can non-specifically swallow pathogens and harmful foreign bodies that invade livestock and poultry, and can present antigens to T and B lymphocytes, thereby participating in the body's specific immune response. Jiang Chenli showed that APS enhances the body's immunity by activating the function of immune cells [3]. APS can promote lymphocyte Th1 and Th2 cytokine secretion and increase lymphocyte proliferation, thereby participating in mediating the body's cellular immunity [13]. Astragalus Polysaccharides can enhance the phagocytosis and secretion of macrophages [4].

2.3. The effect of Astragalus Polysaccharides on Immune Molecules

Immune molecules mainly exist in cell membranes and body fluids. The former includes T and B cell antigen receptors and leukocyte differentiation antigens, and the latter includes immunoglobulin (Ig), complement system and cytokines which mainly composed of T, B lymphocytes and Macrophages are produced after being stimulated by antigens. Astragalus polysaccharides can increase the level of interleukins, interferons and other cytokines in the body, that is, promote the secretion of IL-2, IL-3 and IFN [14]. Zhao Tianzhang and other researchers in their research added different levels of astragalus polysaccharides to broiler diets, and the results showed that they can all increase the serum levels of IL-1, IL-2 and tumor necrosis factor-α (TNF-α) in broiler chickens. The IL-1 content was the highest when the amount was 1.0%, also the TNF-α content was the highest when the addition amount was 0.5% [15]. Researcher Shan Chunlan studied Haitian white chicken after oral administration of 5 mg/ml APS, and found that the number of intestinal mucosal Ig A cells increased significantly the content of specific Ig A antibodies in the jejunum eluate [16]. Also the function of intestinal mucosal immunity is enhanced, and the local immune response level is improved. Researcher Si Changde and other researchers found that adding APS to feed can significantly increase serum complement C3, serum complement C4 and immunoglobulin M (Ig M) levels in broilers [17].

2.4. The effect of Astragalus polysaccharide on the activity of immune-related enzymes

Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione systems play a key role in the defense against cell free radical damage [18]. Astragalus polysaccharides can activate a variety of enzymes' activities in the body, eliminate free radicals in time, reduce oxidative stress in animals, and enhance animal immune response [19]. Adding an appropriate amount of APS to the diet can significantly increase the activity of serum SOD and GSH-Px [20]. Chen Yujiao and other researchers found that the combined action of APS and ginseng stem and leaf saponin (GSLS) can significantly increase the total antioxidant capacity (T-AOC) in the serum of oxidatively stressed chickens, and the activities of T-SOD, GSH-Px and CAT are significant increased [21]. Researcher Yan reported that compared with the control group, the levels of SOD, CAT and glutathione reductase (GR) in the blood and liver of mice in the APS group increased significantly, while the level of GSH-Px decreased slightly [22]. The study by Lu Wei found that APS could significantly improve the antioxidant capacity of puppies by increasing the serum total superoxide dismutase (T-SOD) activity [23]. Researcher Shen Yijun added Astragalus polysaccharides to the lactation dairy cow's diet and found that 10 ~ 50 g/head APS per day can significantly increase (T-AOC), SOD and GSH-Px activities [24].

3. Application of Astragalus Polysaccharides in Poultry Production

3.1. Improve poultry production performance

Adding APS to the diet can increase the average body weight and average daily gain of broilers, reduce the feed-to-weight ratio, and promote the growth performance of broilers [15]. However, there are gender differences in the growth-promoting effect of APS on broiler chickens. The growth-promoting effect on hens is better than that of roosters, and APS can improve the weight uniformity of broilers [25]. Researcher Zhang Yong and other found that adding APS to broiler diets can reduce the feed-to-weight ratio [26]. APS can increase the antioxidant enzyme activity of the layer body, prevent lutein from being oxidized, increase the deposition of pigment, and improve the color of egg yolk. APS can also reduce the blood lipid content of laying hens, reduce fat deposition, facilitate the normal secretion of eggshell glands, promote the secretion of calcium, and improve eggshell quality [27].

3.2. Improve poultry intestinal function

The intestine is an important place for the body to digest and absorb nutrients. The morphological structure of the small intestine and the balance of microbial flora in the intestine are two important indicators for measuring intestinal function. As a feed additive, APS can significantly improve the morphology and structure of the small intestine, improve the digestive function of the small intestine, and at the same time adjust the balance of intestinal microbial colonies, thereby improving the intestinal function of animals and increasing the utilization of nutrients. APS can significantly increase the height and width of the villi of...
the duodenum, jejunum and ileum of broilers, the thickness of the mucosa, the ratio of the chorionic glands, and the surface area of the villi [28]. The regulation of APS on the balance of intestinal microflora is reflected in significantly increasing the number of Lactobacillus, Bacillus, and Bifidobacterium in the intestinal flora of broilers, and reducing the number of Escherichia coli, that is, increasing the number of beneficial bacteria [29]. Also ASP inhibiting the growth of harmful bacteria, and promoting the digestion and absorption of intestinal nutrients. Researcher Gao Yang and other reported when introduced into the diet supplemented ASP that the spleen coefficient was increased significantly, the number of cecal Escherichia coli was extremely reduced, and the number of lactobacilli and bifidobacteria increased significantly [30]. Researcher Xu Qinkun and other reported that APS can not only regulate the type and quantity of intestinal flora, but also is help to reduce the rate of diarrhea in animals [31].

3.3. Improve disease resistance of poultry

Researcher Meng Xianrong and other found that APS can enhance the function of the antioxidative enzyme system in chickens, reduce the content of lipid peroxide, and reduce the damage of active oxygen free radicals to the body, thereby reducing the incidence and mortality of Marek's disease [12]. Researcher Liu Baoguang and other believe that APS can induce the production of interferon in the animal body, which has a broad-spectrum anti-virus, promotes the formation of antibodies, and enhances the body's immune function [32]. APS can prevent colds and reduce the incidence by more than 50%. Combined APS and interferon can reduce the incidence of more than 70%. Researcher Xie Kaichun and other reported that APS can induce endogenous interferons in animals to produce antiviral proteins after acting on cells to inhibit viral protein synthesis, thereby producing antiviral infections [33]. Researcher Xie Lin and other reported that APS can induce endogenous interferon in animals, which produces antiviral protein after acting on cells and inhibits viral protein synthesis, thereby producing antiviral infection [34]. Researcher Hu Yuanliang and other discovered the inhibitory effect of APS on Newcastle Disease Virus I and Newcastle Disease Virus IV, and the inhibitory intensity increased with the increase of APS concentration in diet [35].

Application prospects of Astragalus polysaccharide

In recent years, there have been more and more studies on APS, and some of the components and biological effects of APS have gradually been recognized by researchers. As a natural plant feed additive, APS can significantly promote the body's non-specific immunity and specific immunity, and improve the body's resistance without causing drug resistance and drug residues. However, there are relatively few systematic studies and related mechanisms on the application of APS in animal production. Future development direction we can see:

(1) determine the appropriate amount of APS to be added to the feed of different animals at different stages, and carry out APS nutrient active substance omics research;

(2) work out scientifically extract methods of APS components or biological fermentation to increase the content of effective components.

Environmentally friendly and healthy feed additive products from APS that replace antibiotics will be a new idea and direction for the development of animal husbandry.

References:

систематичних досліджень та пов’язаних з ними механізмів застосування полісахариду астрагалу у тваринництві.

Ключові слова: астрагал полісахариду, імунна регуляція, розведення, м’ясо, птиця, курчат-бройлери.

Дата надходження до редакції: 13.02.2020 р.