PREDICTION OF COW MILK PRODUCTIVITY
Abstract
The paper presents the research results of the prenatal period duration with the purpose to predict early milk productivity of the Ukrainian Red Dairy Breed cows. According to the individual offspring number, the length of the cow prenatal period of ontogenesis was calculated. For this, the date of fertile insemination of the mother and the date of calving were used. The animals were divided into three groups. The principle of group formation was used (x±0.67SD). Animals which had a prenatal period of ontogenesis shorter than the specified range were assigned to the group of a shortened period (group I), and those which exceeded this range – to the group of an extended period (group III), the rest – to the average group (II group). The duration of prenatal development was in the range from 270 to 276 days in the I group of cows, in the II group of cows it was from 277 to 283 days, in the III group of cows – from 284 to 290 days. The hypothesis that different somatic and functional precociousness of heifers can be detected already in the early ontogeny was the main idea of the research, and it was confirmed experimentally. This can influence the formation of their subsequent milk productivity, and therefore can be considered as a predictive marker. In the I group of cows, compared to the III group of peers, the milk yield during 305 days of the third lactation was higher by 650 kg of milk, milk fat was higher by 29.0 kg and milk protein – by 22.0 kg. Animals from the II group took an intermediate position, they differed significantly from peers from the III group in milk fat (P<0.05). The difference between the groups in terms of the component composition of milk was not reliable. The correlation between the indicators of the prenatal period duration and milk yield, milk fat and milk protein was inverse and reliable in the range from –0.326 to –0.357. The group-forming factor had the influence on the specified characteristics in the range of 22.1–28.7% at P<0.01. The influence of the prenatal period duration on the fat content and milk protein is insignificant and was in the range of 1.5–2.9% for P>0.05. Thus, it was established that the length of the prenatal period affects the level of milk yield, milk fat and milk protein and it can be a prognostic marker at an early age. Other things being equal, heifers with a shortened and average prenatal period and a live weight at birth within the limits of permissible deviations, that is, developed normally, should be selected for herd repair.
References
2. Azzam, S. M., Kinder, J. E., Nielsen, M. K., Werth, L. A., Gregory, K. E., Cundiff, L. V. & Koch, R. M. (2017). Environmental effects on neonatal mortality of beef calves. Journal of Animal Science, 71(2), 282–290. https://doi.org/10.2527/1993.712282x
3. Bach, A. (2011). Associations between several aspects of heifer development and dairy cow survivability to second lactation. Journal of Dairy Science, 94(2), 1052–1057. https://doi.org/10.3168/jds.2010-3633
4. Banos, G., Brotherstone, S., & Coffey, M. P. (2007). Prenatal Maternal Effects on Body Condition Score, Female Fertility, and Milk Yield of Dairy Cows. Journal of Dairy Science, 90(7), 3490–3499. https://doi.org/10.3168/jds.2006-809
5. Berry, D. P., Lonergan, P., Butler, S. T., Cromie, A. R., Fair, T., Mossa, F., & Evans, A. C. O. (2008). Negative Influence of High Maternal Milk Production Before and After Conception on Offspring Survival and Milk Production in Dairy Cattle. Journal of Dairy Science, 91(1), 329–337. https://doi.org/10.3168/jds.2007-0438
6. Bir, C., de Vuyst, E. A., Rolf, M. & Lalman, D. (2018). Optimal beef cow weights in the U.S. southern plains. Journal of Agricultural and Resource Economics, 43(1), 103–117. URL: http://surl.li/tghtfd
7. Bourdon, R. M. & Brinks, J. S. (1982). Genetic, environmental and phenotypic relationships among gestation length, birth weight, growth traits and age at first calving in beef cattle. Journal of Animal Science, 55(3), 543–553. https://doi.org/10.2527/jas1982.553543x
8. Borshch, O. O., Gutyj, B. V., Sobolev, O. I., Borshch, O. V., Ruban, S. Yu., Bilkevich, V. V., Dutka, V. R., Chernenko, O. M., Zhelavskyi, M. M., Nahirniak, T. (2020). Adaptation strategy of different cow genotypes to the voluntary milking system. Ukrainian Journal of Ecology, 10 (1), 145-150. https://doi.org/10.15421/2020_23
9. Chernenko, O. M., Chernenko, O. I. & Sanyara, R. A. (2017). The quality of colostrum and vitality of calves, born from cows with different reaction to stress experiences. Regulatory Mechanisms in Biosystems, 8(2), 299–303. https://doi.org/10.15421/021747
10. Chernenko, О. М., Chernenko, О. I., Shulzhenko, N. M. & Bordunova, О. G. (2018). Biological features of cows with different levels of stress resistance. Ukrainian Journal of Ecology, 8(1), 466–474. https://doi.org/10.15421/2018_237
11. Chernenko, О., Prishedko, V., Chernenko, О., Mylostyvyi, R., Shulzhenko, N. & Bordunova, O. (2023). Comparison of morphometric and histological properties of testicles and sperm production in breeding bulls with different reaction to stress. Veterinarska stanica, 54 (2), 193-209. https://doi.org/10.46419/vs.54.2.3
12. Copping, K. J., Ruiz-Diaz, M. D., Rutland, C. S., Mongan, N. P., Callaghan, M. J., McMillen, I. C., Rodgers,R. J. & Perry, V. E. A. (2017). Peri-conception and first trimester diet modifies reproductive development in bulls. Reproduction, Fertility and Development. https://doi.org/10.1071/rd17102
13. Ferrell, C. L. (1991). Maternal and fetal influences on uterine and conceptus development in the cow: I. Growth of tissues of the gravid uterus. Journal of Animal Science, 69(5), 1945–1953. https://doi.org/10.2527/1991.6951945x
14. Foote, W. D., Tyler, W. J. & Casida, L. E. (1959). Effect of some genetic and maternal environmental variations on birth weight and gestation length in Holstein cattle. Journal of Dairy Science, 42(2), 305–311. https://doi.org/10.3168/jds.s0022-0302(59)90565-x
15. Fuerst-Waltl, B., Reichl, A., Fuerst, C., Baumung, R., & Sölkner, J. (2004). Effect of Maternal Age on Milk Production Traits, Fertility, and Longevity in Cattle. Journal of Dairy Science, 87(7), 2293–2298. https://doi.org/10.3168/jds.s0022-0302(04)70050-8
16. Guo, J. R, Monteiro, A. P. A., Weng, X. S., Ahmed, B. M., Laporta, J., Hayen, M. J., Dahl, G. E., Bernard, J. K. & Tao, S. (2016). Short communication: effect of maternal heat stress in late gestation on blood hormones and metabolites of newborn calves. Journal of Dairy Science, 99, 6804–6807. http://dx.doi.org/10.3168/jds.2016-11088
17. Gonzalez-Recio, O., Ugarte, E., & Bach, A. (2012). Trans-Generational Effect of Maternal Lactation during Pregnancy: A Holstein Cow Model. PLoS ONE, 7(12), e51816. https://doi.org/10.1371/journal.pone.0051816
18. Hansen, P. J. (2002). Embryonic mortality in cattle from the embryo's perspective. Journal of Animal Science, 80(2), 33–44. https://doi.org/10.2527/animalsci2002.80E-Suppl_2E33x
19. Hordiichuk, N. M, Denkovych, B. S. & Hordiichuk, L. M. (2017). Shvydkist rostu teliat symentalskoi porody v zalezhnosti vid tryvalosti embriohenezu ta roku narodzhennia. [The growth rate of Simmental calves depending on the duration of embryogenesis and the year of birth]. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii imeni S.Z. Gzhytskoho, 19, 142–146 (in Ukrainian).
20. Hyl, M. I., Chernenko, O. M., Halushko, I. A., Smetana, O. Yu., Karatieieva, O. I., Volkov, V. A., Kramarenko, O. S., Tymofiiv, M. M., Hrytsiienko, Yu. V. (2024). Henetychnyi analiz hospodarsky tsinnykh oznak Bos Taurus : monohrafiia. [Genetic analysis of economically valuable traits of Bos Taurus: monograph]. Mykolaivskyi NAU ; Dniprovskyi DAEU. Odesa : Oldi+, 225–231. URL: http://surl.li/gwgvse (in Ukrainian).
21. Koç, A., & Öner, M. (2023). A Research on Fertility, Herd Life, Milk Production and Milk Quality Characteristics of Simmental (Fleckvieh) Cows: 1. Reproduction, Herd Life and Milk Production Characteristics. Turkish Journal of Agriculture – Food Science and Technology, 11(12), 2339–2346. https://doi.org/10.24925/turjaf.v11i12.2332-2339.6039
22. Lean, S. C., Derricott, H., Jones, R. L., & Heazell, A. E. P. (2017). Advanced maternal age and adverse pregnancy outcomes: A systematic review and meta-analysis. PLOS ONE, 12(10), e0186287. https://doi.org/10.1371/journal.pone.0186287
23. Makanjuola, B. O., Miglior, F., Abdalla, E. A., Maltecca, C., Schenkel, F. S., & Baes, C. F. (2020). Effect of genomic selection on rate of inbreeding and coancestry and effective population size of Holstein and Jersey cattle populations. Journal of Dairy Science, 103(6), 5183–5199. https://doi.org/10.3168/jds.2019-18013
24. Merlot, E., Quesnel, H. &Prunier, A. (2013). Prenatal stress, immunity and neonatal health in farm animal species. Animal, 7(12), 2016–2025. https://doi.org/10.1017/S175173111300147X
25. Monteiro, A. P. A., Guo, J. R., Weng, X. S., Ahmed, B. M., Hayen, M. J., Dahl, G. E., Bernard, J. K. & Tao, S. (2016). Effect of maternal heat stress during the dry period on growth and metabolism of calves. Journal of Dairy Science, 99, 3896–3907. http://dx.doi.org/10.3168/jds.2015-10699
26. Mylostyvyi, R., Sejian, V., Souza-Junior, J. B. F., Wrzecińska, M., Za, T., Chernenko О., Pryshedko, V., Suslova, N., Chabanenko, D., & Hoffmann, G. (2024a). Digitalisation opportunities for livestock welfare monitoring with a focus on heat stress. Multidisciplinary Reviews, 7(12), 2024300. https://doi.org/10.31893/multirev.2024300
27. Mylostyvyi, R., Skliarov, P., Izhboldina, O., Chernenko, O., Lieshchova, M., Gutyj, B., Marenkov, O. and D. E. Rahmoun, D. E. (2024b). The effectiveness of an automated heat detection system in Brown Swiss heifers when using sexed semen at a large dairy unit. Veterinarska stanica, 55 (2), 157–167. https://doi.org/10.46419/vs.55.2.7 URL: https://cutt.us/JhRno
28. Nešetřilova, H. (2018). Multiphasic growth models for cattle. Czech Journal of Animal Science, 50(8), 347–354. http://dx.doi.org/10.17221/4176-cjas
29. Patil, P. V., & Patil, M. K. (2020a). Judging of Cows and Buffaloes. Milk Production Management, 186–188. https://doi.org/10.1201/9781003110552-33
30. Patil, P. V., & Patil, M. K. (2020b). External Body Parts of Cows and Buffaloes. Milk Production Management, 20–22. https://doi.org/10.1201/9781003110552-3
31. Schmidt, M., Sangild, P. T., Blum, J. W., Andersen, J. B. & Greve, T. (2004). Combined ACTH and glucocorticoid treatment improves survival and organ maturation in premature newborn calves. Theriogenology, 61(9), 1729–1744. http://dx.doi.org/10.1016/j.theriogenology.2003.10.002
32. Shmalhauzen, I. I. (1984). Rist i dyferentsiatsiia. [Growth and differentiation]. Kyiv, Naukova Dumka (in Ukrainian.
33. Strong, R. A., Silva, E. B., Cheng, H. W. & Eicher, S. D. (2015). Acute brief heat stress in late gestation alters neonatal calf innate immune functions. Journal of Dairy Science, 98, 7771–7783. http://dx.doi.org/10.3168/jds.2015-9591
34. Taher, El. S., Moustafa, M. S. el din m. & Berg, R. (2010). Prenatal growth of some organs in the Egyptian water buffalo (Bos/bubalus/bubalis/L.).Relation between body weight and brain, thymus, stomach and oesophagus weights. Zentralblatt Für Veterinärmedizin Reihe A, 16(6), 529–535. http://dx.doi.org/10.1111/j.1439-0442.1969.tb00754.x
35. Tao, S., Monteiro, A. P. A., Thompson, I. M., Hayen, M. J. & Dahl, G. E. (2012). Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. Journal of Dairy Science, 95(12), 7128–7136. https://doi.org/10.3168/jds.2012-5697
36. Tenhunen, S., Thomasen, J. R., Sørensen, L. P., Berg, P., & Kargo, M. (2024). Genomic analysis of inbreeding and coancestry in Nordic Jersey and Holstein dairy cattle populations. Journal of Dairy Science, 107(8), 5897–5912. https://doi.org/10.3168/jds.2023-24553
37. Tomasek, R., Rezac, P. & Havlicek, Z. (2017). Environmental and animal factors associated with gestation length in Holstein cows and heifers in two herds in the Czech Republic. The Riogenology, 87, 100–107. https://doi.org/10.1016/j.theriogenology.2016.08.009
38. Van De Stroet, D. L., CalderónDíaz, J. A., Stalder, K. J., Heinrichs, A. J. & Dechow, C. D. (2016). Association of calf growth traits with production characteristics in dairy cattle. Journal of Dairy Science, 99, 1–9. http://dx.doi.org/10.3168/jds.2015-10738
39. Van Eetvelde, M., & Opsomer, G. (2020). Prenatal programming of later performance in dairy cattle. Vlaams Diergeneeskundig Tijdschrift, 89(1). https://doi.org/10.21825/vdt.v89i1.15985
40. Van Eetvelde, M., de Jong, G., Verdru, K., van Pelt, M. L., Meesters, M., & Opsomer, G. (2020a). A large-scale study on the effect of age at first calving, dam parity, and birth and calving month on first-lactation milk yield in Holstein Friesian dairy cattle. Journal of Dairy Science, 103(12), 11515–11523. https://doi.org/10.3168/jds.2020-18431
41. Van Eetvelde, M., Verdru, K., de Jong, G., van Pelt, M. L., Meesters, M., & Opsomer, G. (2021b). Researching 100 t cows: An innovative approach to identify intrinsic cows factors associated with a high lifetime milk production. Preventive Veterinary Medicine, 193, 105392. https://doi.org/10.1016/j.prevetmed.2021.105392
42. Vatskyi, V. F. & Velychko, S. A. (2013). Pokaznyky rannoho ontohenezu molochnoi khudoby ta mozhlyvist yikh vykorystannia dlia pidvyshchennia produktyvnosti diinoho stada. [Indicators of early ontogeny of dairy cattle and the possibility of their use for increasing the productivity of dairy herds]. Visnyk Poltavskoi derzhavnoi ahrarnoi akademii, 1, 80–84 (in Ukrainian).
43. Weller, J. I. (2022). Genomic Prediction of Complex Traits in Animal Breeding with Long Breeding History, the Dairy Cattle Case. Genomic Prediction of Complex Traits, 447–467. https://doi.org/10.1007/978-1-0716-2205-6_16
44. Wolfenson, D., Roth, Z. & Meidan, R. (2000). Impaired reproduction in heat-stressed cattle: Basic and applied aspects. Animal Reproduction Science, 60(2), 535–547. https://doi.org/10.1016/S0378-4320(00)00102-0
45. Wrzecinska, M., Czerniawska-Piątkowska, E., Mylostyvyi, R., Chernenko, О., Araújo, J. P., Kowalczyk, A., Kowalewska, I., Gączarzewicz, D., Stefaniak, W., & Rzewucka-Wójcik, E. (2024). Selection indexes in terms of functional features in modern dairy cattle breeding in Europe. The Journal of Agricultural Science, 1–8. https://doi.org/10.1017/s0021859624000388
46. Yin, T. & König, S. (2018). Genetic parameters for body weight from birth to calving and associations between weights with test-day, health, and female fertility traits. Journal of Dairy Science, 101, 1–13. https://doi.org/10.3168/jds.2017-13835
47. Zanton, G. I. & Heinrichs, A. J. (2005). Meta-analysis to assess effect of prepubertal average daily gain of Holstein heifers on first-lactation production. Journal of Dairy Science, 88, 3860–3867. https://doi.org/10.3168/jds.S0022-0302(05)73071-X