ELECTROSPARK DEPOSITION IN REMANUFACTURING ENGINEERING, PROSPECT OF DEVELOPMENT AND APPLICATION
Abstract
Electro Spark Deposition (ESD) technology is widely used in the preparation of surface coating of parts,remanu-facturing and repair. It has been used widely in many industrial areas. The surfaces of mechanical parts are strengthened to improve properties by ESD technology. The article introduced firstly the development history and various terms of the ESD technology. Sec-ondly, it was shown that the working principle of ESD and the work process of ESD. With the development process of ESD deposition equipment, three types of vibrating electrodes were figured. Thirdly, the characteristics of ESD were summarized. Then it introduced the latest research progress of ESD technology on the hotspots of research and new fields of application. Discoveries and new theories in materials provide greater scope for exploration in ESD research. For example, fusion coating of amorphous structure and in-situ reaction in the cemented carbide, multi-layer composite process and multiple materials composite coating, high entropy alloy, nanostructure coating, and biological coating. Researchers had optimized the machining process to improve the surface quality of ESD. At present, the research hotspots are in the ESD of the subsequent treatment process and the study of the composite process. These researches provide new ideas for ESD automation processing to obtain better surface quality. Finally, the paper addressed the current problems of ESD technology and provided an outlook on the research direction and future development of ESD technology.
References
2. Chen, B., Fan, X., Tang, X., & Li, D. (2018). Microstructure and Properties of YG10/CD750 Double Electrode Alternating Deposition Electro-spark Deposition Coating. Hot Working Technology, 04. doi:http://10.14158/j.cnki.1001-3814.2018.04.041
3. Chen, C., Tang, Y., & Xu, Y. (2011, 2011-10-22). Ultrasonic ESD deposition device and its process research. Paper pre-sented at the Proceedings of the 14th China Special Processing Academic Conference.
4. Durdu, S., Korkmaz, K., Aktuğ, S. L., & Çakır, A. (2017). Characterization and bioactivity of hydroxyapatite-based coatings formed on steel by electro-spark deposition and micro-arc oxidation. Surface and Coatings Technology, 326, 111-120. doi:https://10.1016/j.surfcoat.2017.07.039
5. Esmaeili, A., Ghaffari, S. A., Nikkhah, M., Ghaini, F. M., Farzan, F., & Mohammadi, S. (2021). Biocompatibility assessments of 316L stainless steel substrates coated by Fe-based bulk metallic glass through electro-spark deposition method. Colloids and Surfaces B-Biointerfaces, 198. doi:https://10.1016/j.colsurfb.2020.111469
6. Gao, Y.-x., & Wang, J.-b. (2021). Effects of Laser Remelting on Microstructure and Wear Properties of Ni-Based Coating Prepared by Electrospark Deposition. Meterials Profection, 54(1), 54(51): 112-115, 120. doi:https://10.16577/j.cnki.42-1215/tb.2021.01.019
7. Gao, Y., Zhao, C., & Yi, J. (2012). Microstructure and Properties of Ni-Cr Alloyed Coating Prepared by Electrospark Deposition Processes. Journal of Materials Engineering 2(3), 74-78.
8. Jiang, T., Hu, J., & Zhou, J. (2011). Effect of Middle Layer by Electro-spark Deposition Technology on Bonding Strength of Porcelain and Cast Pure Titanium. Journal of Oral Science Research, 27(04), 277-280. doi:http://10.13701/j.cnki.kqyxyj.2011.04.007
9. Karlsdottir, S. N., Geambazu, L. E., Csaki, I., Thorhallsson, A. I., Stefanoiu, R., Magnus, F., & Cotrut, C. (2019). Phase Evolution and Microstructure Analysis of CoCrFeNiMo High-Entropy Alloy for Electro-Spark-Deposited Coatings for Geothermal Envi-ronment. Coatings, 9(6), 406. doi:https://doi.org/10.3390/coatings9060406
10. Kazemi, M., Ahangarani, S., Esmailian, M., & Shanaghi, A. (2020). Investigation on the corrosion behavior and biocompat-ibility of Ti-6Al-4V implant coated with HA/TiN dual layer for medical applications. Surface Coatings Technology, 397, 126044. doi:https://doi.org/10.1016/j.surfcoat.2020.126044
11. Konoplianchenko, I., Tarelnyk, V., Antoszewski, B., Martsynkovskyy, V., Belous, A., Gerasimenko, V., & Vasilenko, O. (2018). Mathematical modeling a process of strengthening steel part working surfaces at carburizing thereof by electroerosive alloying method.
12. Lazarenko, B., & Lazarenko, N. (1943). About the inversion of metal erosion and methods to fight ravage of electric contacts.
13. Li, Q., Yue, T. M., Guo, Z., Lin, X. J. M., & A, m. t. (2013). Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process. Metallurgical and Materials Transactions A, 44(4), 1767-1778. doi:https://doi.org/10.1007/s11661-012-1535-4
14. Radek, N., & Bartkowiak, K. (2010). Performance properties of electro-spark deposited carbide-ceramic coatings modified by laser beam. Physics Procedia, 5, 417-423. doi:https://doi.org/10.1016/j.phpro.2010.08.163
15. Tang, J. (2016). Mechanical and tribological properties of the TiC–TiB2 composite coating deposited on 40Cr-steel by electro spark deposition. Applied Surface Science, 365, 202-208. doi:https://doi.org/10.1016/j.apsusc.2015.12.198
16. Tarelnik, V. B., Paustovskii, A. V., Tkachenko, Y. G., Martsinkovskii, V. S., Belous, A. V., Konoplyanchenko, E. V., & Gaponova, O. P. (2018). Electrospark Graphite Alloying of Steel Surfaces: Technology, Properties, and Application. Surface Engineer-ing and Applied Electrochemistry, 54(2), 147-156. doi:http://doi.org/10.3103/s106837551802014x
17. Tarelnik, V. V., & Kuchmii, A. N. (1997). Electroerosion hardening of metal-cutting tools for machining corrosion-resistant steels. Chemical and Petroleum Engineering, 33(1), 100-102. doi:http://doi.org/10.1007/bf02416796
18. Tarelnyk, V. B., Gaponova, O. P., Konoplianchenko, Y. V., Martsynkovskyy, V. S., Tarelnyk, N. V., & Vasylenko, O. O. (2019). Improvement of Quality of the Surface Electroerosive Alloyed Layers by the Combined Coatings and the Surface Plastic De-formation. I. Features of Formation of the Combined Electroerosive Coatings on Special Steels and Alloys. Metallofizika I Noveishie Tekhnologii, 41(1), 47-69. doi:http://doi.org/10.15407/mfint.41.01.0047
19. Tarelnyk, V. B., Konoplianchenko, I. V., Gaponova, O. P., Tarelnyk, N. V., Martsynkovskyy, V. S., Sarzhanov, B. O., . . . Antoszewski, B. (2020). Effect of Laser Processing on the Qualitative Parameters of Protective Abrasion-Resistant Coatings. Powder Metallurgy and Metal Ceramics, 58(11-12), 703-713. doi:http://doi.org/10.1007/s11106-020-00127-8
20. Wang, J., Zhang, Z., Yan, N., LI, G., TANG, M., & FENG, Z. (2014). Interface behavior of WC-4Co coating by electro-spark deposition. The Chinese Journal of Nonferrous Metals, 24(11), 2849-2855. doi:https://doi.org/10.19476/j.ysxb.1004.0609.2014.11.021
21. Wang, Y. F., Yan, H., Juan, L. I., Sun, S. Y., Song, Z. J., & Shi, Z. Q. (2018). Microstructure and Corrosion Resistance of FeCoCrNiCu High-entropy Alloy Coating Prepared by Electro-spark Deposition. Transactions of the China Welding Institution, 39(07), 121-124+134. doi:https://doi.org/10.12073/j.hjxb.2018390188
22. Wei, X., Chen, Z., Zhong, J., Wang, L., Hou, Z., Zhang, Y., & Tan, F. (2017). Facile preparation of nanocrystalline Fe2B coating by direct electro-spark deposition of coarse-grained Fe2B electrode material. Journal of Alloys Compounds, 717, 31-40. doi:https://doi.org/10.1016/j.jallcom.2017.05.081
23. You, T., Huang, D.-W., Liu, S.-B., Liu, H.-Y., Zhang, C.-H., Su, G.-Q., & Wang, M.-C. J. F. (2007). Research of Surface Carburizing on Titanium Alloys by Electrospark Deposition Foundry(03), 239-241.
24. Zamulaeva, E. I., Levashov, E. A., Kudryashov, A. E., Vakaev, P. V., & Petrzhik, M. I. (2008). Electrospark coatings de-posited onto an Armco iron substrate with nano- and microstructured WC–Co electrodes: Deposition process, structure, and properties. Surface and Coatings Technology, 202(15), 3715-3722. doi:https://doi.org/10.1016/j.surfcoat.2008.01.008
25. Zhang, L., & Shao, J. (2017). Research Status and Development Trend of Electro-spark Surface Deposition Technology. Equipment Manufacturing Technology(8), 76-79,.
26. Zhang, P., Zhang, E.-L., Ma, L., & Cai, Z.-H. J. Z. G. X. X. (2011). Processing Properties of TiN Ceramic Coating Prepared by Insitu Synthesis Electric Spark Deposition. Journal of Academy of Armored Force Engineering, 25(4), 74-79.
27. Zhang, Y., Chen, Z., Wei, X., Wang, L., Hou, Z., & Yang, W. (2019). Microstructure and Properties of Chromium Carbide Based Metal-Ceramic Coatings Prepared by Electro-Spark Deposition. Rare Metal Materials and Engineering, 48(2), 601-607.
28. ZHANG, Y., LI, L., CHANG, Q., WANG, X.-m., ZHAO, Y., ZHU, S., . . . GAO, X.-w. (2021). Research Status and Prospect of Electro-spark Deposition Technology. Surface Technology, 50(1). doi:https://doi.org/10.16490/j.cnki.issn.1001-3660.2021.01.012
29. Zhao, H., Gao, C., Wu, X.-y., Xu, B., Lu, Y.-j., & Zhu, L.-k. (2019). A novel method to fabricate composite coatings via ultrasonic-assisted electro-spark powder deposition. Ceramics International, 45(17), 22528-22537. doi:https://doi.org/10.1016/j.ceramint.2019.07.279