CONSTRUCTION OF THE CLIMATE CHAMBER WITH THE LIGHTING ADAPTED FOR GROWING OF AGRICULTURAL CROPS

Keywords: green house, LEDs, fluorescent lamp, growbox, phytotron, indoor ground, light intensity

Abstract

In recent years, more and more greenhouse complexes are appearing in Ukraine and around the world. An increase in their number is needed to provide humanity with food, as the world's population grows every year. For growing plants indoors and using aeroponics requires controlled conditions to create an optimal environment for growth and development. Carrying out vegetation ex-periments in growboxes also allows to obtain complete data on the study of plant genotypes, the effectiveness of fertilizers, biological products, etc. One of the issues that need to observe is the study of choosing the most suitable light source for growing plants, in particular, crop. Thereby, a climate chamber with a volume of 1.44 m3 and a height of 2 m was designed and constructed to study plants. For control of abiotic factors, such sensors have been used as YL-38 + YL-69 and HTU-21, for lighting - LEDs model ST-12-5050-60-RGB-65 and fluorescent lamp DeLux T8 36/33. The climate control program was developed using the Arduino IDE. The difference between the created climate camera and existed cameras is in possibility of faster replacement of light sources. The ad-vantages and disadvantages of light sources used for growing plants under controlled conditions are shown. Examples of other grow-boxes, phytotrons and climate chambers used for growing crops are given.

References

1. Bespalov, I. M. (2007). Laboratorni klimatychni kompleksy dlia doslidiv z biolohichnymy obiektamy [Laboratory climatic complexes for experiments with biological objects]. Zbirnyk naukovykh prats Instytutu tsukrovykh buriakiv UAAN, 9, 300-306 (in Ukrain-ian).
2. Borysov, V. M. (2013). Osoblyvosti struktury ta konstruktsii klimatychnoi kamery dlia doslidzhennia derevyny [Features of the structure and construction of the climatic chamber for the study of wood]. Pratsi Odeskoho politekhnichnoho universytetu, 2(41), 89-94 (in Ukrainian).
3. Chervinskyi, L. S., & Lutsak, Ya. M. (2014). Eksperymentalna ustanovka dlia doslidzhennia vplyvu zminy spektru optychnoho vyprominiuvannia na zrostannia teplychnykh roslyn [Experimental setup to study the effect of changes in the spectrum of optical radiation on the growth of greenhouse plants]. Enerhetyka i avtomatyka, 4, 119-125 (in Ukrainian).
4. Choong, T.W., He, J., Qin, L., & Lee, S.K. (2018). Quality of supplementary LED lighting effects on growth and photosynthesis of two different Lactuca recombinant inbred lines (RILs) grown in a tropical greenhouse. Photosynthetica, 56(4), 1278-1286. https://doi.org/10.1007/s11099-018-0828-2
5. Dutta Gupta, S. (Ed.). (2017). Light Emitting Diodes for Agriculture: Smart Lighting. Springer Singapore. https://doi.org/10.1007/978-981-10-5807-3
6. Gomez, C., Morrow, R.C., Bourget, M., Massa, G.D., & Mitchell, C.A. (2013). Comparison of Intracanopy Light-emitting Diode Towers and Overhead High-pressure Sodium Lamps for Supplemental Lighting of Greenhouse-grown Tomatoes. Hort Technology, 23(1), 93-98. https://doi.org/10.21273/HORTTECH.23.1.93
7. Hilmy, R. H., Susana, R., & Hadiatna, F. (2021). Rancang Bangun Smart Grow Box Hidroponik untuk Pertumbuhan Tanaman Microgreen Berbasis Internet of Things. Power Elektronik: Jurnal Orang Elektro, 10(2), 41-47.
8. Evtushenko E. V. & Chekurov V. M. (2008). Duration of ontogenesis phases and some elements of ear productivity in sum-mer soft wheat (Triticum aestivum L.) in connection with lighting intensity and photoperiod. Agricultural biology (in Russian), 1, 60-64.
9. Katagiri F., Canelon-Suarez D., Griffin K., Petersen J., Meyer R.K., Siegle M., et al. (2015). Design and Construction of an Inexpensive Homemade Plant Growth Chamber. PLoS ONE 10(5): e0126826. https://doi.org/10.1371/journal.pone.0126826
10. Katzin, D., Mourik, S. v., Kempkes, F., & Henten, E.J. v. (2020). GreenLight – An open source model for greenhouses with supplemental lighting: Evaluation of heat requirements under LED and HPS lamps. Biosystems Engineering, 194, 61-81. https://doi.org/10.1016/j.biosystemseng.2020.03.010
11. Kotsiurba V. V. (2020). Avtomatyzovana systema vyroshchuvannia roslyn, chutlyvykh do abiotychnykh faktoriv [Automated system for growing plants sensitive to abiotic factors]. Bakalavrskyi dyplomnyi proiekt KPI im. Ihoria Sikorskoho (in Ukrainian). Excess mode: https://ela.kpi.ua/simple-search?query=%D0%9A%D0%BE%D1%86%D1%8E%D1%80%D0%B1%D0%B0+%D0%92
12. Kowalczyk, K., Olewnicki, D., Mirgos, M., & Gajc-Wolska, J. (2020). Comparison of Selected Costs in Greenhouse Cucumber Production with LED and HPS Supplemental Assimilation Lighting. Agronomy, 10(9), 1342. https://doi.org/10.3390/agronomy10091342
13. Lutsak, Ya. M., & Chervinskyi, L. S. (2014). Ustanovka dlia doslidzhennia dii spektru optychnoho vyprominiuvannia na teplychni roslyny [Installation for studying the effect of the spectrum of optical radiation on greenhouse plants]. Visnyk Kharkivskoho natsionalnoho tekhnichnoho universytetu silskoho hospodarstva imeni Petra Vasylenka, 153, 128-129 (in Ukrainian).
14. Massa G.D., Wheeler R.M., Morrow R.C., & H.G. Levine (2016). Growth Chamberson the International Space Stationfor Large Plants. NASA Technical Reports Server. https://core.ac.uk/reader/42695794
15. Mayeux H. S., Johnson H. B., Polley H. W., Dumesnil M. J. & Spanel G. A. (1993). A Controlled Environment Chamber for Growing Plants Across a Subambient CO2 Gradient. Functional Ecology, 7(1), 125-133. https://doi.org/10.2307/2389875
16. Meng, Q., & Runkle, E.S. (2016). Control of Flowering Using Night-Interruption and Day-Extension LED Lighting. In K. Fujiwara, T. Kozai, & E. S. Runkle (Eds.), LED Lighting for Urban Agriculture, 191-202. Springer Singapore. https://doi.org/10.1007/978-981-10-1848-0_14
17. Niinemets Ülo, Keenan Trevor (2012). Measures of Light in Studies on Light-Driven Plant Plasticity in Artificial Environments. Frontiers in Plant Science, 3, 156 p. https://doi.org/10.3389/fpls.2012.00156
18. Palande, V., Zaheer, A., & George, K. (2018). Fully Automated Hydroponic System for Indoor Plant Growth. Procedia Computer Science, 129, 482-488. https://doi.org/10.1016/j.procs.2018.03.028
19. Porter A.S., Gerald C. Evans-Fitz, McElwain J.C., Yiotis C., Elliott-Kingston C. (2015). Plant Methods, 11:44. doi: 10.1186/s13007-015-0088-0
20. Semenova N. A., Grishin A. A., Dorokhov A. A. (2020). Analytical review of climatic chambers for vegetable crops growing. Bulletin NGIEI, 1 (104), 5–15.
21. Svistunov, S. V. & Bevza, O. M. (2017). Systemy osvitlennia teplychnykh kompleksiv [Lighting systems for greenhouses]. Materialy XI-yi naukovo-praktychnoi konferentsii «Perspektyvni napriamky suchasnoi elektroniky», KPI im. Ihoria Sikorskoho, 232-237 (in Ukrainian).
22. Trawick, E.D., Stinson, W.J., & Martin, A.C. (2018). Energy modeling & design of prototype hydroponic grow system. JMU Scholarly Commons, 2010-2019, 517.
23. Tsili staloho rozvytku [Sustainable development goals]. Excess mode: https://www.ua.undp.org/content/ukraine/uk/home/sustainable-development-goals.html (in Ukrainian)
24. Vernandhes, W., Salahuddin, N.S., & Kowanda, A. (2016). Smart Growbox Design with Temperature and Humidity Monitoring System via the Internet. Teknoin, 22(11), 850-859.
25. Zabel P., Bamsey M., Schubert D., Tajmar M. (2014). Review and analysis of plant growth chambers and greenhouse modules for space. International Conference on Environmental Systems, 13-17 July 2014, Tucson, Arizona.
Published
2022-05-05
How to Cite
Shelest, M. S., Datsko, O. M., & Zakharchenko, E. A. (2022). CONSTRUCTION OF THE CLIMATE CHAMBER WITH THE LIGHTING ADAPTED FOR GROWING OF AGRICULTURAL CROPS. Bulletin of Sumy National Agrarian University. The Series: Mechanization and Automation of Production Processes, (2 (44), 54-58. https://doi.org/10.32845/msnau.2021.2.11