HEAT PUMPS FOR HEAT SUPPLY AND HOT SUPPLY OF AGRICULTURAL ENTERPRISES

Keywords: heat pump, agro-industrial enterprises. thermodynamic cycle, thermal energy, low-potential heat source, heat supply systems, transformation coefficient

Abstract

Currently, the changes taking place in the agro-industrial complex of Ukraine require the development and creation of the latest heat pump technologies for heat and hot water supply of agro-industrial enterprises. The article considers the problem of using heat pumps (TN) operating on alternative energy sources for heat and hot water supply of agroindustrial enterprises. In its work, TN uses low-potential heat, air, water bodies, and the subsoil of the earth. The purpose of the work is to substantiate and investigate the expediency of using TN at agro-industrial production enterprises. An analysis of the characteristics of TNs operating with various sources of low-potential heat was performed. The factors affecting the energy efficiency of TN are determined, the peculiarities of the operation of soil, water and air TN for agro-industrial enterprises of Ukraine are evaluated. The influence of the duration of air temperatures of different values on the thermal productivity of TN was analyzed. In order to increase the efficiency of the heat pump system, a scheme for selecting lowpotential heat using soil TN is proposed. On the basis of the conducted research, it was established that the advantage of air as a heat carrier is that air heaters can work almost everywhere and do not require the arrangement of a low-temperature circuit. A promising way to increase the efficiency of the TN during the annual cycle of its operation is the combined use of low-potential heat of the soil and air. A heat pump system with two sources of energy ensures high thermal productivity of the heating system throughout the year and has a higher energy efficiency index compared to traditional solutions. TNs have a significant advantage over other thermal power plants. They consume energy from renewable sources, reduce electricity costs by more than half. It is a fully automated device. The use of TN for the disposal of low-potential heat flows is economically beneficial. The analysis of the efficiency of heat supply systems shows that in modern economic conditions, the trend of heat supply systems can develop in the following directions: the use of steam-compression heating systems, the use of secondary energy resources of industrial enterprises of the agro-industrial complex, and the improvement of the thermal characteristics of buildings. Modernization with the application of these measures can significantly improve the economic and technical characteristics of heat supply equipment for buildings of agro-industrial production.

References

1. Pro vnesennia zmin do Zakonu Ukrainy "Pro teplopostachannia" shchodo stymuliuvannia vyrobnytstva teplovoi enerhii z alternatyvnykh dzherel enerhii": Zakon Ukrainy vid 21.03.2017. №1959-VIII". [On Amendments to the Law of Ukraine "On Heat Supply" Regarding the Stimulation of the Production of Thermal Energy from Alternative Energy Sources": Law of Ukraine dated March 21.03.2017. No. 1959-VIII]. Information of the Verkhovna Rada (VVR). 2017. No. 17. Art. 207 (in Ukrainian).
2. Maliarenko, V. A., & Lysak L. V. (2004). Enerhetyka, dovkillia, enerhozberezhennia [Energy, environment, energy saving]. H: Rubicon. 368 р. (in Ukrainian).
3. Bezrodnyi, M. K., Pukhovyi, I. I., & Kutra, D. S. (2013). Teplovi nasosy ta yikh vykorystannia [Heat umps and their use]. Tutorial. Kyiv: NTUU "KPI" 312 р. (in Ukrainian).
4. Ostapenko, O. P. (2015). Kholodylna tekhnika ta tekhnolohiia. Teplovi nasosy [Refrigeration quipment and technology. Heat pumps]. Tutorial. Vinnytsia: VNTU. 123 р. (in Ukrainian).
5. Arseniev, V. M., & Meleichuk, S. S. (2018). Teplovi nasosy: osnovy teorii i rozrakhunku [Heat pumps: basics of theory and calculation]. Tutorial. Sumy: SDU. 364 р. (in Ukrainian).
6. Arsenev, V. M. (2009). Teplonasosnaya tekhnologiya yenergozberezhennya [Heat pump energy saving technology]. Sumy: Type of SDU. 251 р. (in Russian).
7. Bosyi, M. V., & Kuzyk, O. V. (2022). Teplovi nasosy dlia opalennia ta hariachoho vodopostachannia [Heat pumps for scorching and hot water supply]. Findings of modern engineering research and developments: Scientific monograph. Riga. Latvia: «Baltija Publishing». P. 24-40 (in Ukrainian).
8. URL:http://baltijapublishing.lv/omp/index.php/bp/catalog/book/217
9. Pisarev, V. Ie. (2002). Teplovi nasosy ta kholodylni ustanovky [Heat pumps and refrigeration units]. Tutorial. K: KNUBA.124 р. (in Ukrainian).
10. Sniezhkin, Yu. F., Chalaiev, D. M., Shavrin, V. S., & Dabizha, N. O. (2008). Teplovi nasosy v systemakh teplokholodopostachannia [Heat pumps in heating and cooling systems]. Under. ed. Acad. NAS of Ukraine A.A. Dolinskyi; National Academy of Sciences of Ukraine, Institute of Technology thermophysics. To: 104 р. (in Ukrainian).
11. Bezrodnyi, M. K., & Prytula, N. O. (2012). Enerhetychna efektyvnist teplonasosnykh skhem teplopostachannia [Energy efficiency of heat pump schemes of heat supply]. monograph. K: NTUU "KPI". 208 р. (in Ukrainian).
12. Shevel, V. Y. (2004). Rabota kompressorov seriinogo ispolneniya na smeci propan–butan v teplonasosnom rezhime raboti [Operation of series compressors for propane-butane oil in the heat pump mode]. Kompressornaia tekhnyka y pnevmatyka v KhKhI veke: KhIII Mezhdunarodnaia nauchno-tekhnycheskaia konferentsyia po kompressorostroenyiu. Sums: SumHU. Р. 239–244 (in Russian).
13. Khmelniuk, M. H., & Martyniuk, M. O. (2008). Povishenie effektivnosti ustanovki nizkotemperaturnoi kondensatsii prirodnogo gaza [Increasing the efficiency of a low-temperature natural gas condensation installation]. Odessa: ODAH. Technical gases. № 4. Р. 30–35 (in Russian).
14. Bosyi, M. V., & Kuzyk, O. V. (2020). Efektyvnist tsyklu teplovoho nasosa dlia teplopostachannia [Efficiency of the heat pump cycle for heat supply]. Central Ukrainian scientific bulletin. Technical sciences. Vol. 3(34). Р. 136–142. (in Ukrainian). URL: http://dspace.kntu.kr.ua/jspui/handle/123456789/10447
15. Bosyi, M. V. (2022). Termodynamichna enerhoefektyvnist heotermalnoho teplovoho nasosa na hruntovykh vodakh [Thermodynamic energy efficiency of a geothermal heat pump on groundwater]. Moderní aspekty vědy: XX. Díl mezinárodní kolektivní monografie / Mezinárodní Ekonomický Institut s.r.o. Česká republika: Publishing Group. "Vědecká perspektiva " P. 556–568 (in Ukrainian). URL: http://mapiea.kntu.kr. ua/archive/36_I.html
16. Bosyi, M. V. (2022). Teplovi nasosy – enerhoefektyvne vidnovliuvalne ekolohichno chyste dzherelo teploty [Thermal pumps are energy efficient, environmentally friendly, and provide warmth]. Moderní aspekty vědy: XXІ Díl mezinárodní kolektivní monografie Mezinárodní Ekonomický Institut s.r.o. Česká republika: Publishing Group "Vědecká perspektiva" Р. 357–380. (in Ukrainian). URL:http://perspectives.pp.ua/public/site/mono/monography-21.pdf
17. Moroziuk, T. V. (2006). Teoriya kholodilnikh mashin i teplovikh nasosov [Theory of refrigeration machines and heat pumps]. Odessa: Studio "Negotiant". 712 р. (in Russian).
18. Tkachenko, S. I., & Ostapenko, O. P. (2009). Parokompresiini teplonasosni ustanovky v systemakh teplopostachannia [Steam compression heat pump installations in heat supply systems]. Monograph. Vinnytsia: VNTU. 176 р. (in Ukrainian).
19. Arsenev, V. M., & Hrechanenko, V. A. (2002). Eksergeticheskaya otsenka effektivnosti teplonasosnoi tekhnologii energosberezhenii [Exergetic evaluation of the efficiency of heat pump technology energy-saving]. Bulletin of Sumy State University. № 9 (42). Р. 81–85. (in Russian).
20. Bosyi, M. V., Kropivnyi, V. M., Kuzyk, O. V., Kropivna, A. V., & Molokost, L. A. (2022). Termodynamichna enerhoefektyvnist parokompresiinoho teplovoho nasosa na hruntovykh vodakh [Thermodynamic energy efficiency of a vapor compression heat pump on groundwater]. Central Ukrainian scientific bulletin. Technical sciences. Kropyvnytskyi. Vol. 5(36). Р. 47–54. (in Ukrainian).
21. URL: http://mapiea.kntu.kr.ua/archive/36_I.html
22. Bosyi, M. V., Kropivnyi, V. M., & Kuzyk, O. V. (2022). Termodynamichne doslidzhennia tsyklu teplovoho nasosu «hrunt-voda» dlia systemy opalennia prymishchennia [Thermodynamic study of the soil-water heat pump cycle for the room heating system]. Scientific journal Visnyk of the Kremenchug National University named after M. Ostrogradskyi. Kremenchuk: No. 1(132). P. 165–172. (in Ukrainian).
23. URL: http://visnikkrnu.kdu.edu.ua/pravila.php
24. Sirko, Z. S., Korenda, V. A., Vyshniakov, I. Iu., Protasov, O. S., & Okhrimenko S. M., Tsiren N. L. (2020). Vykorystannia teplovykh nasosiv dlia opalennia ta hariachoho vodopostachannia budivel pidpryiemstv na prykladi ustanovok Helioterm [The use of heat pumps for heating and hot water supply of enterprise buildings on the example of Helioterm installations]. Scientific reports of NUBiP of Ukraine. Technology and energy of agricultural industry. № 5 (87) (in Ukrainian).
25. Bosyi, M. V. (2022). Enerhetychna efektyvnist povitrianoho teplovoho nasosa na ekolohichno chystomu robochomu tili propani [The energy efficiency of an air heat pump based on an ecologically clean working medium of propane]. Scientific journal "Scientific Notes of the Tavra National University named after V.I. Vernadsky". Series: Technical sciences". Kyiv: Volume 33 (72), No. 4. P. 144–148. (in Ukrainian). DOI: https://doi.org/10.32838/2663-5941/2022.4/22.URL: https://tech.vernadskyjournals.in.ua/33-72-4
26. Bosyi, M. V., Lysenko, A. Ia., Manuilovych, V. V., & Panishko, O. V. (2021). Efektyvnist tsyklu heotermalnoho teplovoho nasosu [Efficiency of the geothermal heat pump cycle]. The 5th International scientific and practical conference «Topical issues of modern science, society and education» (November 28–30) SPC «Sci-conf.com.ua». Kharkiv. Ukraine. Р. 418–422. (in Ukrainian). URL: https://sci-conf.com.ua/wp-content/uploads/2021/12/TOPICAL-ISSUES-OF-MODERNSCIENCE-SOCIETY-AND-EDUCATION-28-30.11.21.pdf
27. Bosyi, M. V., Lysenko, A.Ia., Manuilovych, V. V., & Barkar, M. M. (2021). Termodynamichna enerhoefektyvnist heotermalnoho teplovoho nasosa «voda-voda» [Thermodynamic energy efficiency of the water-to-water geothermal heat pump]. The 3rd International scientific and practical conference “Modern science: innovations and prospects” (December 5-7) SSPG Publish, Stockholm, Sweden. ISBN 978-91-87224-02-7. 1036 p. (in Ukrainian). URL: https://sci-conf.com.ua/wp-content/uploads/2021/12/MODERN-SCIENCE-INNOVATIONS-AND-PROSPECTS-5-7.12.21.pdf
28. Bosyi, M. V., Lysenko, A. Ya., Manuilovych, A. V., Panishko, O. V., & Barkar, M. M. (2022). Heotermalnyi teplovyi nasos «hrunt-voda» [Ground-water geothermal heat pump]. The 2nd International scientific and practical conference “Modern research in world science” (May 15–17) SPC “Sci-conf.com.ua”. Lviv. Ukraine. ISBN 978-966-8219-86-3. P. 406–413. (in Ukrainian). URL: https://sci-conf.com.ua/wp-content/uploads/2022/05/MODERNRESEARCH-IN-WORLD-SCIENCE-15-17.05.22.pdf
Published
2022-12-10
How to Cite
Bosyi, M. V. (2022). HEAT PUMPS FOR HEAT SUPPLY AND HOT SUPPLY OF AGRICULTURAL ENTERPRISES. Bulletin of Sumy National Agrarian University. The Series: Mechanization and Automation of Production Processes, (2(48), 3-8. https://doi.org/10.32845/msnau.2022.2.1