ANALYSIS OF KINEMATICS OF MOVEMENT OF FIELD UNITS WITH ALL CONTROLLED WHEELS
Abstract
The movement of units along curves is the most difficult element of movement in the field. The main part of the time of work of field units is devoted to curvilinear movement, when the trajectory changes at the request of the driver or due to external disturbances, or due to changes in some parameters during movement. The trajectory of a wheeled machine is the trajectory of its kinematic centre. There is no fundamental difference between a tractor and a car, as the functional qualities during curvilinear movement are the same. Currently, theoretical and experimental methods for the study of curvilinear motion are not sufficiently developed for wheeled and tractor trains during work. The aim of the research is to analyse the kinematics of curvilinear motion of power vehicles with all steered wheels in the field units on reversible lanes. Methods of theoretical analysis of mathematical models of kinematics of unsteady motion of field aggregates, systematization of parameters, sequential analysis of characteristics were used in the analysis of literature sources. Many articles by world scientists have attempted to obtain equations of the trajectory of curvilinear motion of field aggregates to obtain mathematical models of curvilinear motion, but they are too complex to use in practice. A wheeled machine with steered front and rear axles, at the same angles of rotation of the respective wheels, can provide twice the radius than a wheeled machine with one steered axle. This leads to a reduction in the required width of the turning lane, increasing the length of the tracks, increasing the productivity of the unit, significantly reducing the number of damaged plants on sown turning lanes, reducing the mechanical and technological properties of the soil. The conclusions of the research indicate the need to create mathematical equations that describe the curvilinear motion of field units with all steered wheels, which are simpler and suitable for use in practice and for modelling any kind of reversals in agricultural work.
References
2. Backman, J, Oksanen, T, Visala, A, (2012). Navigation system for agricultural machines: Nonlinear model predictive path tracking. Computers and Electronics in Agriculture 82: 32–43.
3. Beljaev, A. N. & Trishina, T. V. (2016). Issledovanie kinematiki povorota kolesnogo traktora. [Investigation of the kinematics of turning a wheeled tractor] Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta, 1(48), 115–120. (in Russia). doi: https://doi.org/10.17238/issn2071-2243.2016.1.115
4. Beljaev, A. N., Orobinskij, V. I., Shackij, V. P., Trishina, T. V., Sheredekin, V. V. & Vysockaja, I. A. (2020) Opredelenie teoreticheskoj traektorii dvizhenija traktora pri povorote «krabom». [Determination of the theoretical trajectory of the tractor when turning "crab"]. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta, 1(64), 42–49 (in Russia). doi: https://doi.org/10.17238/issn2071-2243.2020.1.42
5. Bulgakov, V., Pascuzzi, S. & Beloev, H. (2019). Theoretical Investigations of the Headland Turning Agility of a Trailed Asymmetric Implement-and-Tractor Aggregate. Agriculture, MDPI, Open Access Journal, 9(10), 1-11. doi: https://doi.org/10.3390/agriculture9100224
6. Binh, N.T., Tung, N.A., Nam, D.P. et al. (2019). An Adaptive Backstepping Trajectory Tracking Control of a Tractor Trailer Wheeled Mobile Robot. Int. J. Control Autom. Syst. 17, 465–473 https://doi.org/10.1007/s12555-017-0711-0
7. Bouzar, A, Essaidi, O, Lakhal, V, Coelen, A, Belarouci, M, Haddad, R, Merzouki (2020). Trajectory Planning For Autonomous Wheeled Mobile Robots With Trailer, IFAC-PapersOnLine, 53(2):9766-9771. doi: 10.1016/j.ifacol.2020.12.2657
8. Bulgakov, V., Pascuzzi, S., Beloev, H. & Ivanovs, S. (2019). Theoretical Investigations of the Headland Turning Agility of a Trailed Asymmetric Implement-and-Tractor Aggregate. Agriculture, MDPI, Open Access Journal, 9(10): 1-11. doi: 10.3390/agriculture9100224
9. Fashutdinov, M., Khafizov, M., Galiev, I., Gabdrafikov, F. & Khaliullin, F. (2020). Research of dynamics of turning of machine-tractor aggregate with tractor on wheeled-crawler mover. [BIO Web Conf. International Scientific-Practical Conference “Agriculture and Food Security: Technology, Innovation, Markets, Human Resources” (FIES 2019) (2019, November 13-14)], 17, Kazan. (in Russia). doi: https://doi.org/10.1051/bioconf/20201700056
10. Fomin, C.D. (2017) Matematicheskaja model' dlja issledovanija neustanovivshegosja krivolinejnogo dvizhenija pogruzochno-transportnogo agregata [Mathematical model for investigation of uninstalled curvilinear movement of a load-transport unit (LTU)] Izvestija Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vysshee professional'noe obrazovanie. Napravlenie. Tehnicheskie nauki, 1(45). – Р. 226–234 (in Russia).
11. Jing, Y., Liu, G., Luo, C. (2021). Path tracking control with slip compensation of a global navigation satellite system based tractor-scraper land levelling system, Biosystems Engineering, Volume 212, Pages 360-377, ISSN 1537-5110, https://doi.org/10.1016/j.biosystemseng.2021.11.010
12. Kambarov, B. (2016, July 28-29). Jeksperimental'noe opredelenie parametrov traektorii dvizhenija kul'tivatornogo mashinno-traktornogo agregata na povorotnoj polose hlopkovogo polja [Experimental determination of the parameters of the movement trajectory tiller machine and tractor units on the headland cotton field] European Research: Innovation in Science, Education and Technology: Sb. st. po mat.: ХVIII mezhd. nauch.-prakt. konf., №7(18), (pp.21-24). London (in United Kingdom).
13. Kassaeiyan, P., Alipour, K., Tarvirdizadeh, B. (2020). A full-state trajectory tracking controller for tractor-trailer wheeled mobile robots, Mechanism and Machine Theory, Volume 150, 103872, ISSN 0094-114X, https://doi.org/10.1016/j.mechmachtheory.2020.103872
14. Latif, A., Chalhoub, N. & Pilipchuk, V. (2020). Control of the nonlinear dynamics of a truck and trailer combination. Nonlinear Dyn 99, 2505–2526. https://doi.org/10.1007/s11071-019-05452-1
15. Melnik, V., Dovzhyk, M., Tatyanchenko, B., Solarov, O., Sirenko, Yu. (2017). Analytical method of examining the curvilinear motion of a four-wheeled vehicle. Eastern-European Journal of Enterprise Technologies 3/7(87): 59-65. doi: 10.15587/1729-4061.2017.101335
16. Moussa, H., Wisama, K., Lehtihet, H.E. (2010). Trajectory Planning of Unicycle Mobile Robots With a Trapezoidal-Velocity Constraint. Robotics, IEEE Transactions on. 26: 954 - 962. doi: 10.1109/TRO.2010.2062090
17. Murillo, M. & Sanchez, Guido & Deniz, Nahuel & Genzelis, Lucas & Giovanini, Leonardo. (2022). Improving pathtracking performance of an articulated tractor-trailer system using a non-linear kinematic model. Computers and Electronics in Agriculture. 196. 106826. 10.1016/j.compag.2022.106826
18. Penjushkin, A.S., Poddubnyj, V.I. (2011). Traffic control of a wheeled tractor using satellite radio navigation systems. Polzunovskij al'manah. 4/2: 292-295. (in Russia). http://elib.altstu.ru/journals/Files/pa2011_4_2/pdf/292penushkin.pdf
19. Shipilevskij, G. B. (2005). Traktornaja avtomatika. Konspekt lekcij po discipline “Avtomaticheskie sistemy koljosnyh i gusenichnyh traktorno-tjagovyh mashin”. [Automatic systems of wheeled and tracked tractor-traction machines] Moskva: MGTU “MAMI” (in Russia).
20. Song, M.Z., Kang, S.W., Chung, S.O., Kim, K.D., Chae, Y.S., Lee, D.H., Kim, Y.J., Yu, S.H. & Lee, K.H. (2013). Development of Path Planning Algorithm for an Autonomous Mower Tractor. 4th IFAC Conference on Modelling and Control in Agriculture, Espoo, August 2013. Horticulture and Post Harvest Industry. Finland, p 154. doi: 10.7744/cnujas.2015.42.1.063
21. Yue, M., Hou, X., Gao, R. et al. (2018). Trajectory tracking control for tractor-trailer vehicles: a coordinated control approach. Nonlinear Dyn 91, 1061–1074. https://doi.org/10.1007/s11071-017-3928-9
22. Yue, M., Hou, X., Zhao, X. and Wu, X. (2020). "Robust Tube-Based Model Predictive Control for Lane Change Maneuver of Tractor-Trailer Vehicles Based on a Polynomial Trajectory," in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 12, pp. 5180-5188, Dec. 2020, doi: https://doi.org/10.1109/TSMC.2018.2867807
23. Zavrazhnov, A. I., Miheev, N. V. & Beljaev A. N. (2019). Povyshaem ustojchivost' dvizhenija kolesnogo traktora [We increase the driving stability of a wheeled tractor] Vserossijskij fermer. Internet-zhurnal. (in Russia).
24. Zhou, Y., Wang, Z. & Chung, Kw. (2019). Turning Motion Control Design of a Two-Wheeled Inverted Pendulum Using Curvature Tracking and Optimal Control Theory. J Optim Theory Appl 181, 634–652 https://doi.org/10.1007/s10957-019-01472-4
25. Zhou, S. et al., (2020). "Robust Path Following of the Tractor-Trailers System in GPS-Denied Environments," in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 500-507, April 2020, doi: 10.1109/LRA.2019.2956380
26. Zhou, Y., Wen., X., Wang, Z. (2020). Оn the nonholonomic constraints and motion control of wheeled mobile structures1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 52(4): 1143-1156. doi: 10.6052/0459-1879-19-257
27. Zhou, Y. & Wen, X. & Xu, Qi. (2021). Precise motion control of tractor-trailer wheeled mobile structures via a newly observed key motion law. Nonlinear Dynamics. 103. https://doi.org/10.1007/s11071-020-06162-9