ELECTROSLAG SURFACE OF PRODUCT SURFACES WITH COMPOSITE WEAR-RESISTANT ALLOY

Keywords: composite alloy, electroslag surfacing, powder wire, titanium diboride

Abstract

A method of obtaining wear-resistant composite coatings by electroslag surfacing using a current-driven crystallizer and powder wires containing refractory particles of titanium diboride TiB2 has been developed. The thermal conditions of the formation of a thin layer of wear-resistant deposited metal were studied and the kinetics of the transition into it were revealed refractory microparticles from powder-coated wire filler. The bath of liquid slag, having a lower density than that of the molten metal, is constantly above the surface of the metal melt, protecting it from the influence of air. Drops of filler metal, passing through the slag, undergo metallurgical processing and are cleaned of harmful impurities. The direction of slag convection depends on the diameter of the electrode: when welding with a thin electrode, forced electromagnetic convection prevails, the slag sinks near the electrode and rises along the edges of the slag bath, when using a thick electrode, free thermal convection prevails, the slag sinks along the edges of the slag bath and rises near the electrode. The electrodes can be stationary, and their melting will be carried out as a result of the constant rise of the slag and metal baths. If the electrodes are movable, they are continuously fed into the slag bath as they melt. A combination of these methods is possible. The methods of ESN can be classified according to various features, of which technological ones are the main ones. In the process of ESN, two methods of forming the deposited metal are distinguished. One of them involves the free formation of the weld pool melt on a flat horizontal surface, and the second consists in the use of special forming devices – crystallizers made mainly of copper. In them, the molten metal crystallizes in a closed cavity. To prevent overheating, crystallizers are cooled with running water, and their surfaces in contact with slag and metal melts are covered with graphite and other materials, protecting them from electrochemical erosion. In the case of ESN of composite coatings, a granulated hard alloy is poured from above into the slag bath, the melting temperature of which is higher than the melting temperature of the bond metal, the need for which is due to the inadmissibility of secondary melting of some hard alloys, due to which the surfacing of monocoats from such materials is impossible. Hardness and wear resistance are provided by hard alloy particles, and the metal bond holds them on the surface of the part.

References

1. Saychuk, O.V., Rybalko, I.M., Zakharov, A.V. (2022). Elektroshlakove naplavlennia na postiinomu strumi v strumovomupidvidnomu krystalizatori elektrodom velykoho pererizu [Electroslag deposition on direct current in a current-driven crystallizer with a large cross-section electrode] International Scientific and Practical Conference “Modern Directions and Movements in Science”: Conference proceedings, October 6-8. Luxembourg, Luxembourg. P. 229–237. (in Ukrainian).
2. Skoblo, T.S., Rybalko, I.M., Zakharov, A.V. (2021). Analiz elektroshlakovoho naplavlennia metalu z maloiu tovshchynoiu vidnovliuvalno-zmitsniuiuchoho robochoho sharu detali. [Analysis of electroslag deposition of metal with a small thickness of the restoring and strengthening working layer of the part] Information-analytical international technical journal “Industry in Focus”. Kharkiv, No. 10. P. 54–56. (in Ukrainian).
3. Stepanov, V.V. (1997). Plotnost rasplavlennykh flyusov dlya elektroshlakovogo pereplava i nagreva [Density of molten fluxes for electroslag remelting and heating]. Kyiv : Automatic welding. No. 2. (in Russian).
4. Lutyy, I.V. Elektroshlakovaya plavka i rafinirovaniye metallov [Electroslag smelting and refining of metals]. Kyiv : Nauk. Dumka. No. 7. V. 5. No. 2. S. 22– 24. (in Russian).
5. Podgaetskyi, V.V. (1997). Svarochnyye flyusy [Welding fluxes]. Kyiv : Technika. No. 4. No. 3. P. 52–60. (in Russian).
6. Latash, Yu.V. Ochistka metalla ot nemetallicheskikh vklyucheniy pri elektroshlakovom pereplave [Purification of metal from non-metallic inclusions during electroslag remelting]. Kyiv: Automatic welding. No. 9. No. 23. P. 34–56. (in Russian).
7. Nikitin, B.M. (1997). O fazovom sostave ftorsoderzhashchikh shlakov elektroshlakovogo pereplava [On the phase composition of fluorine-containing slags of electroslag remelting]. AS USSR. Metals. No. 6. No. 5. P. 54–56. (in Russian).
8. Zhmoidin, G.I. (1989). Plavkost ftorsoderzhashchikh shlakov [Fusibility of fluorine-containing slags]. AS USSR. Metals. No. 6. P. 123–134. (in Russian).
9. Kuskov, Yu. M., Skorokhodov, Yu. M., Ryabtsev, I.A., Sarychev, I.S. (2018). Elektroshlakove naplavlennya [Electroslag welding]. Kyiv : Science and technology. No. 14. P. 67–68. (in Ukrainian).
10. Kuskov, Yu.M., Ryabtsev, I.A., Kuzmenko, O.G., Lentyugov, I.P. (2020). Elektroshlakovi tekhnolohiyi naplavlennya ta pererobky metalu ta metalovmisnykh vidkhodiv [Electroslag technologies of welding and processing of metal and metal wastes]. Kyiv : Interservice. No.11. P. 22–23. (in Ukrainian).
11. Paton, B. E., Medovar, B. I. (ed.). (1976). Elektroshlakovyye pechi [Electroslag furnaces]. Kyiv : Naukova Dumka. No. 4. (in Russian).
12. Paton, B. E. (ed.). (1980). Elektroshlakovaya svarka i naplavka [Electroslag welding and surfacing]. Moscow: Mechanical engineering. No. 2. (in Russian).
13. Paton, B. E., Medovar, B. I. (1982). Elektroshlakovaya tekhnologiya za rubezhom [Electroslag technology abroad]. Kyiv : Naukova Dumka. No. 1. (in Russian).
14. Chen, Ch. S., Gao, R. F. (1989). Issledovaniye elektroshlakovogo pereplava v sostavnoy kristallizatore s futerovannoy verkhney chast'yu [Study of electroslag remelting in a composite mold with a lined top]. Problems spec. Electrometallurgy. No. 7. (in Russian).
15. Latash, Yu. V., Matyakh, V. N. (1987). Sovremennyye metody polucheniya slitkov osobo vysokogo kachestva [Modern methods for producing high quality ingots]. Kyiv : Naukova Dumka. No. 6. (in Russian).
16. Mironov, Yu. M. (2002). Vliyaniye roda toka na protsessy v elektroshlakovykh ustanovkakh [Influence of current type on processes in electroslag installations]. Kyiv : Electrometallurgy. No. 8. (in Russian).
17. Paton, B. E., Medovar, B. I. (1986). Metallurgiya elektroshlakovogo protsessa [Metallurgy of the electroslag process]. Kyiv : Naukova Dumka. No. 8. (in Russian).
18. Dudko, D. A., Rublevsky, I. N. (1986). Vliyaniye roda i polyarnosti toka na metallurgicheskiye protsessy pri elektroshlakovoy svarke [Effect of current type and polarity on metallurgical processes in electroslag welding]. Kyiv : Naukova Dumka. No. 9. (in Russian).
19. Ksendzyk, G.V. (1975). Tokovedushchiy kristallizator, obespechivayushchiy vrashcheniye shlakovoy vanny [Current-carrying mold providing rotation of the slag pool]. Kyiv : Specialist Electrometallurgy. No.2. (in Russian).
20. Paton, B.E. (1974). Tekhnologii elektrosvarki metallov i splavov plavleniyem [Technologies for electric welding of metals and alloys by fusion]. Moscow: Mashinostroenie. №.3. (in Russian).
21. Latash, Yu. V., Medovar, B.I. (1970). Elektroshlakovyy pereplav [Electroslag remelting]. Kyiv : Naukova Dumka. №. 5. (in Russian).
22. Paton, B. E. (1980). Elektroshlakovaya svarka i naplavka [Electroslag welding and surfacing]. Kyiv : Naukova Dumka. №.11. (in Russian).
23. Sushchuk-Slyusarenko, I.I., Lychko, I.I., Kozulin, M.G. (1989). Elektroshlakovaya svarka i naplavka v remontnykh rabotakh [Electroslag welding and surfacing in repair work]. Kyiv : Naukova Dumka. № 12. (in Russian).
24. Paton, B.E. (1974). Tekhnologiya elektrosvarki metallov i splavov plavleniyem [Technology of electric welding of metals and alloys by melting]. Kyiv : Naukova Dumka. № 14. (in Russian).
25. Gusev, A.I., Kibko, N.V., Kozyrev, N.A., Popova, M.V., Osetkovsky, I.V. (2016). Issledovaniye svoystv naplavlennogo metalla poroshkovymi provolokami 40GMFR i 40KH3G2MF [Investigation of the properties of deposited metal with flux-cored wires 40GMFR and 40Kh3Zh2MF]. Moskov: IOP Conf. Series: Materials Science and Engineering. № 1. (in Russian).
26. Gusev, A.I., Kibko, N.V., Popova, M.V., Kozyrev, N.A., Osetkovsky, I.V. (2016). Struktura i svoystva naplavlennykh sloyev, poluchennykh s ispol'zovaniyem poroshkovykh provolok 40GMFR i 40KH3G2MF [Structure and properties of deposited layers obtained using flux-cored wires 40GMFR and 40Kh3Zh2MF]. Moskov : Bulletin of the Mining and Metallurgical Section of the Russian Academy of Natural Sciences. Department of Metallurgy: Sat. scientific tr. Issue. № 36. (in Russian).
27. Gusev, A.I., Kozyrev, N.A., Kibko, N.V., Popova, M.V., Kryukov, R.E. (2017). Issledovaniye struktury i svoystv metalla, naplavlennogo poroshkovoy provolokoy sistemy Fe - C - Si - Mn - Cr - Mo - Ni - V - Co [Investigation of the structure and properties of metal deposited with a flux-cored wire of the Fe - C - Si - Mn - Kr - Mo - Ni - B - Co system]. Moskov : Actual problems in mechanical engineering. V. 10. No. 2. S. 31–32. (in Russian).
28. Gusev, A.I., Kibko, N.V., Popova, M.V., Kozyrev, N.A., Osetkovsky, I.V. (2017). Naplavka poroshkovymi provolokami C - Si - Mn - Mo - V - B i C - Si - Mn - Cr - Mo - V detaley gorno-shakhtnogo oborudovaniya [Surfacing with flux-cored wires C - Si - Mn - To - B - B and C - Si - Mn - Kr - To - V of mining equipment parts]. Moskov: Izv. universities. Ferrous metallurgy V. 60. No. 4. S. 318–323. (in Russian).
29. Azzoni, M. (2009). Napravleniya i razrabotki v oblasti tipov tverdykh faz dlya primeneniya v abrazionnykh otlozheniyakh protiv istiraniya [Trends and developments in the field of solids types for application in abrasion deposits against attrition]. Moskov: WeldInter national. V. 23. P. 706–716. (in Russian).
30. Klimpel, A., Dobrzanski, L. A., Janicki, D., Lisiecki, A. (2005). Stoykost k istiraniyu metalloporoshkovykh provolok GMA s naplavkoy [Abrasion resistance of GTA metal-cored wires with hardfacing]. Moskov: Materials Processing Technology. V. 164-165. P. 1056–1061. (in Russian).
Published
2022-12-10
How to Cite
Rybalko, I. M., Saychuk, O. V., Zakharov, A. V., & Potoskaev, O. M. (2022). ELECTROSLAG SURFACE OF PRODUCT SURFACES WITH COMPOSITE WEAR-RESISTANT ALLOY. Bulletin of Sumy National Agrarian University. The Series: Mechanization and Automation of Production Processes, (2(48), 61-65. https://doi.org/10.32845/msnau.2022.2.9