MODERN SYSTEMS OF INOCULATION OF SEED MATERIAL OF ROW CROPS
Abstract
Inoculation of seed material is quite often studied by scientists from the point of view of the influence of the process on the development of culture. However, there is very little information on ensuring the technological operation of wet seed inoculation itself. At the same time, the inoculation process is mainly provided by outdated means of mechanization. Although inoculation is quite often used in Ukraine when growing legumes, the process of treating seeds with inoculants has not yet been optimized. Most often, for carrying out a technological operation, seed treatment units are used, which requires not only large energy costs, but also the involvement of a large number of workers. Therefore, the purpose of this study was to study agricultural machines capable of carrying out inoculation precisely during the sowing of crops to ensure compliance with agricultural requirements and increase the energy efficiency of agricultural enterprises. In the analysis of literary sources, three systems were identified and analyzed that could theoretically meet the requirements of driving operators and agronomists during inoculation. Among them are systems that open the furrow with a disc or cultivator and injector systems. For each of them, the advantages and disadvantages of their operation as a system for inoculation have been identified. The most suitable means for inoculation, which can meet the needs of agricultural producers, were determined to be the special StandMax Hunter CS applicator and the spraying systems from TM Raven, which are installed on sowing complexes and used by foreign agricultural producers. Also, the article highlights the features of the systems and components used in them. Among them are the types of nozzles that can be used in inoculation systems; sensors to monitor liquid spillage; microprocessors and software are also integral components. However, during the search and analysis of literature sources, no methodology and recommendations were found for applying inoculants to the soil during sowing, so this topic deserves further, more detailed research.
References
2. Alley, M. M., Reiter, S., Thomason, W. E., & Reiter, M. S. (2010). Pop-up and/or Starter Fertilizers for Corn.
3. Aniskevych, L. V., & Rosamakha, Yu. O. (2016). Konstruktyvni osoblyvosti soshnykovykh system suchasnykh sivalok ta yikh vidpovidnist vymoham tochnoho zemlerobstva [Design features of coulter systems of modern planters and their compliance with the requirements of precision agriculture]. Naukovyi visnyk Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy. Seriia: Tekhnika ta enerhetyka APK, (241), 269-278 [in Ukrainian].
4. Anitha, G., Kumar, A. A., Rao, A. S., & Rao, C. S. (2019). Sensor based Planter-cum-Site Specific Fungicide Applicator. Agricultural Engineering Today, 43(1), 46-53.
5. Ashraf, M., Akhtar, M., Ahmad, Q., & Ahmad, S. (2017). Development and laboratory testing of maize planter-cumliquid fertilizer applicator. ournal of Agricultural Research, 55(2).
6. Bai, J., Tian, M., & Li, J. (2022). Control System of Liquid Fertilizer Variable-Rate Fertilization Based on Beetle Antennae Search Algorithm. Processes, 10(2), 357. https://doi.org/10.3390/pr10020357
7. Baker, C. J. (2007). No-tillage Drill and Planter Design – Large-scale Machines. In K. E. Saxton & C. J. Baker (Eds.), No-tillage Seeding in Conservation Agriculture (pp. 185-256). CABI.
8. Bautista, E. U., Suministrado, D. C., & Koike, M. (2000). Mechanical Deep Placement of Fertilizer in Puddled Soils. Journal of the japanese society of agricultural machinery, 62(1), 146-157. https://doi.org/10.11357/jsam1937.62.146
9. Berdin, S. I., Onychko, V. I., & Murach, O. M. (2013). Vplyv biolohichnykh osoblyvostei sortu na efektyvnist inokuliatsii nasinnia horokhu [Effect of biological characteristics of variety on the inoculation efficiency of pea seeds]. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriia «Ahronomiia i biolohiia», 3(25), 182-187 [in Ukrainian].
10. Boetel, M. A., Dregseth, R. J., Schroeder, A. J., Majumdar, A., & Bredehoeft, M. W. (2004). Granular, liquid, and seed treatment insecticidesfor management of wireworms in sugarbeet. Sugarbeet Research and Extension Reports, 35, 166.
11. Campo, R. J., Araujo, R. S., Mostasso, F. L., & Hungria, M. (2010). In-furrow inoculation of soybean as alternative to fungicide and micronutrient seed treatment. Rev. Bras. Ciênc. Solo, 34(4). https://doi.org/10.1590/S0100-06832010000400010
12. Chen, K., Zhao, B., Zhou, L., Wang, L., Wang, Y., Yuan, Y., & Zheng, Y. (2021). Real-time missed seeding monitoring planter based on ring-type capacitance detection sensor. INMATEH – Agricultural Engineering, 64(2), 279-288.
13. da Rosa, D. P., Verardi, J., Girardi, J. S., Conte, P. H., & Spagnolo, R. T. (2020). Inoculation Methods and Doses and Relationship with the Vegetative and Reproductive Development of Soybeans. Journal of Experimental Agriculture International, 42(7), 124-132. https://doi.org/10.9734/JEAI/2020/v42i730561
14. da Silva, M. J., & Magalhães, P.S.G. (2019). Modeling and design of an injection dosing system for site-specific management using liquid fertilizer. Precision Agric, 20, 649–662. https://doi.org/10.1007/s11119-018-9602-5
15. da Silva, M., & Magalhaes, P. S. G. (2017). A liquid injection dosing system for site-specific fertiliser management. Biosystems Engineering, 163, 150-158. https://doi.org/10.1016/j.biosystemseng.2017.09.005
16. Danylchenko, O. M., Kovalenko, I. M., & Butenko, A. O. (2018). Produktyvnist chyny pry vnesenni riznykh doz mineralnykh dobryv ta inokuliatsii nasinnia v umovakh pivnichno-skhidnoho Lisostepu Ukrainy [Peavine productivity by mineral fertilization of different doses and seed inoculation under the conditions of North-East Forest Steppe of Ukraine]. Naukovi horyzonty, 2, 29-34 [in Ukrainian].
17. Danylchenko, O.M., & Zhatova, H. O. (2016). Urozhainist i yakist nasinnia kormovykh bobiv ta sochevytsi zalezhno vid inokuliatsii bakterialnymy preparatamy i vnesennia mineralnykh dobryv [Yield and seed quality of fodder beans and lentils depending on inoculation with bacterial preparations and application of mineral fertilizers]. Visnyk Zhytomyrskoho natsionalnoho ahroekolohichnoho universytetu, 1(1), 94-101 [in Ukrainian].
18. Datsko, O. M. (2021). Roslynni probiotyky: vplyv na roslyny v umovakh stressu [Plant probiotics: effect on crops under stress]. Bulletin of Sumy National Agrarian University. The series: Agronomy and Biology, 43(1), 10-18 [in Ukrainian]. https://doi.org/10.32845/agrobio.2021.1.2
19. Denton, M. D., Phillips, L. A., Peoples, M. B., Pearce, D. J., Pearce, A. D., Mele, P. M., & Brockwell, J. (2017). Legume inoculant application methods: effects on nodulation patterns, nitrogen fixation, crop growth and yield in narrow-leaf lupin and faba bean. Plant and Soil, 419(1), 25-39. http://dx.doi.org/10.1007/s11104-017-3317-7
20. Devram, L. S., & Mani, I. (2020). Design and development of pressurized aqueous fertilizer application system for seeder. Agricultural Engineering Today, 44(1), 12-19. https://doi.org/10.52151/aet2020441.1514.
21. Doshi, T., Joshi, J., Vyas, R., & Upadhyay, P. (2015). Agritech Automation on Seeding and Fertigation: A Revolution in Agriculture. IJISET-International Journal of Innovative Science, Engineering & Technology, 2(11), 82-87.
22. Dražić, M. S. (2017). Development and optimization of novel eletronic device for automatic control of liquid starter fertilizer injection in maize sowing. [Doctoral Dissertation]. Belgrade. https://nardus.mpn.gov.rs/handle/123456789/9370
23. Drazic, M., Gligorevic, K., Pajic, M., Zlatanovic, I., Spalevic, V., Sestras, P., Skataric, G., & Dudic, B. (2020). The Influence of the Application Technique and Amount of Liquid Starter Fertilizer on Corn Yield. Agriculture, 10(8), 347. https://doi.org/10.3390/agriculture10080347
24. Engel, R. E., Fische, T., Miller, J., & Jackson, G. (2003). A small‐plot seeder and fertilizer applicator. Agronomy Journal, 95(5), 1337-1341. https://doi.org/10.2134/agronj2003.1337
25. Field, H. L., & Long, J. M. (2018). Machinery Calibration. In Introduction to Agricultural Engineering Technology: A Problem Solving Approach (pp. 107-142). Springer International Publishing. https://doi.org/10.1007/978-3-319-69679-9_8
26. Garcia, A. P., Cappelli, N. L., & Umezu, C. K. (2014). Electrically driven fertilizer applicator controlled by fuzzy logic. Eng. Agríc, 34(3). https://doi.org/10.1590/S0100-69162014000300014
27. Gassmann, A., & Weber, P. (2015). Evaluation of Bt Corn and Soil-applied Insecticides for Management of Corn Rootworm Larvae. Iowa State University Research and Demonstration Farms Progress Reports, 1(1), Iowa State University Research and Demonstration Farms Progress Reports.
28. Glaucia, C. F., Alessandro, L. B., Fernanda, B. G. A., & Lucas, C. P. (2017). Effects of associated co-inoculation of Bradyrhizobium japonicum with Azospirillum brasilense on soybean yield and growth. African Journal of Agricultural Research, 12(1), 6-11. https://doi.org/10.5897/AJAR2016.1171
29. Grabau, Z. J., Liu, C., Schumacher, L. A., Small, I. M., & Wright, D. L. (2021). In-furrow fluopyram nematicide efficacy for Rotylenchulus reniformis management in cotton production. Crop Protection, 140, Crop Protection. https://doi.org/10.1016/j.cropro.2020.105423
30. Grabovskiy, M. B. (2018). Substantiation of the corn sowing terms in compatible crops with sweet sorghum. Agrobiology, 1(138), 67-76.
31. He, H., Peng, M., Lu, W., Hou, Z., & Li, J. (2022). Commercial organic fertilizer substitution increases wheat yield by improving soil quality. Science of The Total Environment, 851, 158132. https://doi.org/10.1016/j.scitotenv. 2022.158132
32. Heruk, S. M., & Petrychenko, Ye. A. (2014). Tendentsii rozvytku konstruktsii posivnykh ahrehativ. Tekhnichnyi servis ahropromyslovoho, lisovoho ta transportnoho kompleksiv, (1), 31-45 [in Ukrainian].
33. Huang, X., Wang, W. W., Li, Z. D., Wang, Q. Q., Zhu, C. X., & Chen, L. Q. (2019). Design method and experiment of machinery for combined application of seed, fertilizer and herbicide. Int J Agric & Biol Eng, 12(4), 63–71.
34. Ibrahim, H.M., & El‑Sawah, A.M. (2022). The Mode of Integration Between Azotobacter and Rhizobium Afect Plant Growth, Yield, and Physiological Responses of Pea (Pisum sativum L.). Journal of Soil Science and Plant Nutrition, 1-14. https://doi.org/10.1007/s42729-021-00727-2
35. Jinlong, F., Shujuan, Y., & Qichao, L. (2021). Design of deep-fertilization mechanism with deformed gears and performance tests. NMATEH-Agricultural Engineering, 65(3). https://doi.org/10.35633/inmateh-65-34
36. Jordan, D. L., Johnson, P. D., Hare, A. T., Anco, D., Chapin, J., Thomas, J., Monfort, S., & Balota, M. (2018). Influence of Inoculation with Bradyrhizobia and Nitrogen Rate on Yield and Estimated Economic Return of Virginia Market‐Type Peanut. Crop, Forage & Turfgrass Management, 4(1), 1-7. https://doi.org/10.2134/cftm2018.01.0002
37. Kaiser, D. E., Lamb, J. A., Bloom, P. R., & Hernandez, J. A. (2014). Comparison of field management strategies for preventing iron deficiency chlorosis in soybean. Agronomy Journal, 106(6), 1963-1974. https://doi.org/10.2134/agronj13.0296
38. Kalnahuz, O. M., Semernia, O. V., & Lomekin, D. S. (2021). Sposoby vnesennia dobryv [Fertilizer application methods]. Materialy Mizhnarodnoi naukovo-praktychnoi konferentsii «Molod i tekhnichnyi prohres v APV» Innovatsiini rozrobky v ahrarnii sferi. 2, 120-122 [in Ukrainian].
39. Kasal, Y. G., Gore, A., Shete, P. P., & Thalkar, M. (2018). Effect of travel speed of tractor on rate of application in liquid fertilizer application system. Plant Archives, 18(1), 987-990.
40. Kasal, Y. G., Thakare, S. K., & Shete, P. P. (2019). Effect of pressure attribute on rate of application in liquid fertilizer application system. Plant cell biotechnology and molecular biology, 20(1-2), 67-72.
41. Klymchuk, M., Salo, Ya., Dumych, V., & Vetokhin, V. (2021). Alternatyvni tekhnichni zasoby dlia vnesennia ridkykh dobryv v shar gruntu [Alternative technical means for applying liquid fertilizers to the soil layer]. Naukovo-tekhnichni zasady rozroblennia, vyprobuvannia ta prohnozuvannia silskohospodarskoi tekhniky i tekhnolohii Materialy ХХІ Mizhnarodnoi naukovoi konferentsii 22 veresnia 2021 roku, 76-80 [in Ukrainian].
42. Kostenko, O., Lapenko, H., Prasolov, Y., Lapenko, T., & Kalinichenko, A. (2019). Increasing the effectiveness of aggregates for planting sugar beet stecklings to receive elite seeds. Agronomy Research, 17(4), 1649-1664. https://doi.org/10.15159/ar.19.194
43. Kotenko, S.S., & Ratushnyi, V.V. (2017). Tekhnichni zasoby dlia mekhanizovanoi obrobky nasinnia biopreparatamy [Technical means for mechanized processing of seeds with biological preparations]. Materialy III Mizhnarodnoi naukovopraktychnoi konferentsii (u ramkakh II naukovoho forumu «Naukovyi tyzhden u Krutakh – 2017», 13-14 bereznia 2017 r., s. Kruty, Chernihivska obl.), 1, 162-170 [in Ukrainian].
44. Kumawat, K. C., Singh, I., Nagpal, S., Sharma, P., Gupta, R.K., & Sirari, A. (2022). Co-inoculation of indigenous Pseudomonas oryzihabitans and Bradyrhizobium sp. modulates the growth, symbiotic efficacy, nutrient acquisition, and grain yield of soybean. Pedosphere, 32(3), 438-451. https://doi.org/10.1016/S1002-0160(21)60085-1
45. Kusale, S.P., Attar, Y. C., Sayyed, R.Z., Enshasy, H.E., Hanapi, S.Z., Ilyas, N., Elgorban, A.M., Bahkali, A.H., & Marraiki, N. (2021). Inoculation of Klebsiella variicola alleviated salt stress and improved growth and nutrients in wheat and maize. Agronomy, 11(5), 927. https://doi.org/10.3390/agronomy11050927
46. Kusi, N. Y. O., Stevens, W. B., Sintim, H. Y., y Garcia, A. G., & Mesbah, A. O. (2021). Phosphorus fertilization and enhanced efficiency products effects on sugarbeet. Industrial Crops and Products, 171, 113887. https://doi.org/10.1016/j.indcrop.2021.113887
47. Kyveryga, P. M., Mueller, T. A., & Mueller, D. S. (2018). On‐farm replicated strip trials. Precision agriculture basics, 198-207. https://doi.org/10.2134/precisionagbasics.2016.0096
48. Lehkodukh, I., & Lehkodukh, H. (2018). Vnesennia dobryv posivnymy ta gruntoobrobnymy mashynamy [Application of fertilizers by sowing and tillage machines]. Tekhnika i tekhnolohii APK, 2(110), 33-37 [in Ukrainian].
49. Manea, D., Marin, E., Sorică, C., & Nedelcu, A. (2009). Mechanized Application of the Microbial Inoculants at Vegetable Plants Sowing. Bulletin UASMV Agriculture, 66(1), 381-386.
50. McGuire, A. (2014). High residue farming under irrigation: residue management through planting.
51. Mehboob, N., Minhas, W.A., Naeem, M., Yasir, T.A., Naveed, M., Farooq, S., & Hussain, M. (2022). Seed priming with boron and Bacillus sp. MN54 inoculation improves productivity and grain boron concentration of chickpea. Crop and Pasture Science, 73(5), 494-502. https://doi.org/10.1071/CP21377
52. Semernia, O. V., & Kalnahuz, O. M. (2016). Shchodo vnesennia ridkykh mineralnykh dobryv [Regarding the introduction of liquid mineral fertilizers]. Materialy mizhnarodnoi naukovo-praktychnoi konferentsii-forumu «Rozumna ahrotekhnika dlia efektyvnoho zemlerobstva», 39 [in Ukrainian].
53. Mockeviciene, I., Repsiene, R., Amaleviciute-Volunge, K., Karcauskiene, D., Slepetiene, A., & Lepane, V. (2022). Effect of long-term application of organic fertilizers on improving organic matter quality in acid soil. Archives of Agronomy and Soil Science, 68(9), 1192-1204. https://doi.org/10.1080/03650340.2021.1875130
54. Morais, T. P. D., Brito, C. H. D., Brandão, A. M., & Rezende, W. S. (2016). Inoculation of maize with Azospirillum brasilense in the seed furrow. Revista Ciência Agronômica, 47, 290-298. https://doi.org/10.5935/1806-6690.20160034
55. Nascente, A. S., & Cobucci, T. (2015). Soil phosphorus availability and dry bean yield as affected by the application of liquid calcium carbonate micron particles on the furrow. Afr. J. Agric. Res., 10(15), 1840-1851. https://doi.org/10.5897/AJAR2014.8694.
56. Nyord, T., Søgaard, H. T., Hansen, M. N., & Jensen, L. S. (2008). Injection methods to reduce ammonia emission from volatile liquid fertilisers applied to growing crops. Biosystems Engineering, 100(2), 235-244. https://doi.org/10.1016/j.biosystemseng.2008.01.013
57. Oliveira, D. P., Pereira, T. D. A., Rufini, M., Martins, F. A. D., da Silva Junior, C. L., Baptista, M. V. B. D. G., da Silva, J. S., de Oliveira, P. A. C., da Silva Aragão, S. O., de Andrade, M. J. B., & de Souza Moreira, F. M. (2019). Liquid Inoculation with Rhizobia in the Planting Furrow of Common Bean under No‐Till Is Feasible under Different Soil and Climatic Conditions. Crop Science, 59(5), 2178-2184. https://doi.org/10.2135/cropsci2018.08.0522
58. Oliveira, D. P., Soares, B. L., Martins, F. A. D., Franceschini, L. A., Cardillo, B. E. D. S., Rufini, M., de Morais, A. R., de Souza Moreira, F. M., & de Andrade, M. J. B. (2018). Viability of liquid medium-inoculation of Rhizobium etli in planting furrows with common bean. Pesquisa Agropecuária Brasileira, 53, 394-398. https://doi.org/10.1590/S0100-204X2018000300015
59. Ovcharuk, O. V., Kalenska, S. M., Ovcharuk, O. V., & Khomina, V. Y. (2020). Biological fixation of nitrogen by agrocenoses of soy and application of inoculants. Current state of science in agriculture and environmental management: theory and practice (November 20, 2020), 132-135.
60. Palgrave, D. A. (Ed.). (2020). Fluid Fertilizer Science and Technology. Taylor & Francis Group.
61. Pierson, W. L., Kandel, Y. R., Allen, T. W., Faske, T. R., Tenuta, A. U., Wise, K. A., & Mueller, D. S. (2018). Soybean Yield Response to In‐furrow Fungicides, Fertilizers, and Their Combinations. Crop, Forage & Turfgrass Management, 4(1), 1-9. https://doi.org/10.2134/cftm2017.10.0073
62. Plumblee, M. T., & Mueller, J. D. (2021). Implementing precision agriculture concepts and technologies into crop production and site-specific management of nematodes. In R. A. Sikora, J. Desaeger, & L. Molendijk (Eds.), Integrated Nematode Management: State-of-the-art and Visions for the Future (pp. 421-427). CAB International. https://doi.org/10.1079/9781789247541.0059
63. Popescu, E., Nenciu, F., & Vladut, V. (2022). A new strategic approach used for the regeneration of soil fertility, in order to improve the productivity in ecological systems. Land Reclamation, Earth Observation & Surveying, Environmental Engineering, 11, 265-272.
64. Qiao, D., Li, N., Cao, L., Zhang, D., Zheng, Y., & Xu, T. (2022). How Agricultural Extension Services Improve Farmers’ Organic Fertilizer Use in China? The Perspective of Neighborhood Effect and Ecological Cognition. Sustainability, 14(12), 7166. https://doi.org/10.3390/su14127166
65. Radionov, D. (2020, October 23). Dragon – rishennia dlia ratsionalnoho vnesennia dobryv [Dragon is a solution for rational application of fertilizers] – Ahrobiznes sohodni [in Ukrainian]. http://agro-business.com.ua/2017-09-29-05-56-43/item/19148-dragon-ishennia-dlia-ratsionalnoho-vnesennia-dobryv.html
66. Randall, G. (2004). Optimum phosphorus placement for reduced tillage systems. In Proceedings of the Wisconsin Fertilizer, Aglime and Pest Management Conference, 43, 10.
67. Rezende, W. S., Brandão, A. M., Brito, C. H. D., & Morais, T. P. D. (2016). noculation of maize with Azospirillum brasilense in the seed furrow. Revista Ciência Agronômica, 47(2), 290-298. http://dx.doi.org/10.5935/1806-6690.20160034
68. Rishennia Precision Planting dlia vnesennia ridkykh dobryv [Precision Planting solutions for applying liquid fertilizers]. (n.d.). Amako [in Ukrainian]. https://amacoint.com/ua/selhoztehnik/liquid-fertilizers/
69. Ross, P. (2020). Reviving GrubPlan to ensure appropriate use and application of imidacloprid for control of cane grubs.
70. Rutan, J., & Steinke, K. (2019). Corn nitrogen management following daikon radish and forage oat cover crops. Soil Science Society of America Journal, 83(1), 181-189. https://doi.org/10.2136/sssaj2018.07.0269
71. Sahu, P. K., Gupta, A., Singh, M., Mehrotra, P., & Brahmaprakash, G. P. (2018). Bioformulation and Fluid Bed Drying: A New Approach Towards an Improved Biofertilizer Formulation. In R. S. Sengar & A. Singh (Eds.), Ecofriendly Agro-biological Techniques for Enhancing Crop Productivity. Springer Nature Singapore. 10.1007/978-981-10-6934-5_3
72. Schiffmann, J., & Alper, Y. (1968). Inoculation of peanuts by application of Rhizobium suspension into the planting furrows. Experimental Agriculture, 4(3), 219-226.
73. Scott Tubbs, R., Harris, G. H., Beasley, J. P., Smith, A. R., & Smith, N. B. (2012). Effect of inoculant and nitrogen application at planting on peanut production in Georgia. Crop Management, 11(1), 1-11. https://doi.org/10.1094/CM-2012-0823-01-RS
74. Sharda, A., Fulton, J. P., & Taylor, R. K. (2016). Performance of variable-orifice nozzles for liquid fertilizer applications. Applied Engineering in Agriculture, 32(3), 347-352. https://doi.org/10.13031/aea.32.11428
75. Shustik, L., Nilova, N., Stepchenko, S., Sydorenko, S., & Klochai, O. (2020). Doslidzhennia efektyvnosti zastosuvannia aplikatora DRAGON 6000 dlia vnesennia ridkykh dobryv KAS u resursooshchadnykh tekhnolohiiakh [Study of the effectiveness of the applicator dragon6000 for application of liquid CAS fertilizers inresource-saving technology]. Tekhniko-tekhnolohichni aspekty rozvytku ta vyprobuvannia novoi tekhniky i tekhnolohii dlia silskoho hospodarstva Ukrainy, 27(41), 268-279 [in Ukrainian].
76. Sidhu, Y.-S., Singh, H. S., Jat, M., Chhokar, H. S., Setia, R. S.,. R., & Jat, M. L. (2020). Conservation agriculture and scale of appropriate agricultural mechanization in smallholder systems. Manual. Borlaug Institute for South Asia (BISA), International Maize and Wheat Improvement Center (CIMMYT).
77. Singh, S. P., Kumar, A., & Kushwaha, H. L. (2020). Sugar cane Canopy Spraying: A Perspective Solution with Ergonomics and Mechatronics Approach. Sugar Tech, 22, 203–207. https://doi.org/10.1007/s12355-019-00766-1
78. Sivarajan, S., Maharlooei, M., Bajwa, S. G., & Nowatzki, J. (2018). Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil and Tillage Research, 175, 234-243. https://doi.org/10.1016/j.still.2017.09.001
79. Stichler, C., & Livingston, S. (2003). Reduced/Conservation Tillage in South and Central Texas. Texas FARMER Collection. https://hdl.handle.net/1969.1/87182.
80. Sundaram, P. K., Mani, I. D., Lande, S. A. T. I. S. H., Parray, R. A., & Khura, T. K. (2019). Design and Development of Fertilizer Metering System for Tractor drawn Liquid Fertilizer Applicator: Interaction of Root and microbes. Journal of AgriSearch, 6(4), 211-214.
81. Sundram, P. K., & Mani, I. (2020). Development of Liquid Fertilizer Applicator. Journal of AgriSearch, 5(4), 291-293.
82. Till, S. (2017). A cost-effective approach for combining nematicides, starter fertilizers, and plant growth regulators in order to create a sustainable management system for the southern root-knot nematode, Meloidogyne incognita, in corn.
83. Tkachuk, A. P. (2014). Seed inoculation as an important ecological factor in increasing productivity of galega vegetative mass. Feeds and Feed Production, (77), 85-88.
84. Tochnyi moment: vse shcho treba znaty pro novu sivalku Fendt MOMENTUM. (2020, July 28). Kurkul [in Ukrainian]. https://kurkul.com/spetsproekty/843-tochniy-momentum-vsi-harakteristiki-novoyi-sivalki-fendt-yaki-trebaznati-persh-nij-kupiti
85. Tomchuk, V. (2020 b). Trends of plant fertilization under new production conditions. Slovak international scientific journal, 1, 7-17.
86. Tomchuk, V.V. (2020 a). Praktychni aspekty vykorystannia znariaddia z holchastymy inzhektsiinymy robochymy orhanamy dlia zhyvlennia roslyn [Practical aspects of using tools with bristle injection working bodies for plant nutrition]. Mizhnar. nauk. konf.«Naukovo-tekhnichni zasady rozrobky, vyprobuvannia ta prohnozuvannia silskohospodarskoi tekhniky i tekhnolohii», 13 veres. 2019 r.-Doslidnytske, 69-70 [in Ukrainian].
87. Trimurtulu, N., Rao, D. L. N., Trimurtulu, N., & Amaravathi, G. (2014). Liquid microbial inoculants and their efficacy on field crops, ANGRAU. Agricultural Research Station, Amaravathi, 54.
88. Tubbs, R. S., Kemerait, R. C., Williams, B., & Sarver, J. M. (2015). Effect of Bradyrhizobia inoculant formulation with phorate in new peanut fields. Peanut Science, 42(2), 138-144.
89. Vetokhin, V., Nehrebetskyi, I., Ryzhkova, T., Salo, Ya., & Vozniuk, T. (2021). Analitychnyi ohliad tekhnichnykh rishen holchastykh rotatsiinykh znariad dlia vnesennia ridkykh dobryv u shar gruntu [Analytical review of technical solutions of needle rotary tools for applying liquid fertilizers to the soil layer]. Tekhniko-tekhnolohichni aspekty rozvytku ta vyprobuvannia novoi tekhniky i tekhnolohii dlia silskoho hospodarstva Ukrainy, 29(43), 95-107 [in Ukrainian]. http://dx.doi.org/10.31473/2305-5987-2021-1-29(43)-9
90. Wang, W., Wang, W., Jia, H., Zhuang, J., & Wang, Q. (2019). Effects of seed furrow liquid spraying device on sowing quality and seedling growth of maize. International Journal of Agricultural and Biological Engineering, 12(2), 68-74.
91. Welver, M. (2019). Efficiency of chickpea seed bacterization. Agrarian science and educationin the european integration context., 68-72.
92. Wilson, R. G., Orloff, S. B., & Taylor, A. G. (2015). Evaluation of insecticides and application methods to protect onions from onion maggot, Delia antiqua, and seedcorn maggot, Delia platura, damage. Crop Protection, 67, 102-108. https://doi.org/10.1016/j.cropro.2014.10.002
93. Xiuyun, X., Xufeng, X., Zelong, Z., Bin, Z., Shuran, S., Zhen, L., Tiansheng, H., & Huixian, H. (2019). Variable Rate Liquid Fertilizer Applicator for Deep-fertilization in Precision Farming Based on ZigBee Technology. IFAC-PapersOnLine, 52(30), 43-50. https://doi.org/10.1016/j.ifacol.2019.12.487
94. Yamin, M., Wan Ismail, W. I., Mohd Kassim, M. S., Abd Aziz, S., & Shamshiri, R. (2016). VRT liquid fertilizer applicator for soil nutrient management. Jurnal Teknologi, 78(1-2), 73-78. https://doi.org/10.11113/jt.v78.7271
95. Yu, C., Wang, Q., Cao, X., Wang, X., Jiang, S., & Gong, S. (2021). Development and Performance Evaluation of a Precise Application System for Liquid Starter Fertilizer while Sowing Maize. In: Actuators. Multidisciplinary Digital Publishing Institute, 10(9), 221. https://doi.org/10.3390/act10090221
96. Zhang, J., Liu, G., Huang, J., & Zhang, Y. (2021). A Study on the Time Lag and Compensation of a Variable-Rate Fertilizer Applicator. Applied Engineering in Agriculture, 37(1), 43-52. https://doi.org/10.13031/aea.13855
97. Zheng, W., Jiang, Y., Ma, X., & Qi, Q. (2019). Development of a liquid-jet nozzle for fertilizer injection in paddy fields using CFD. Computers and Electronics in Agriculture, 167, 105061. https://doi.org/10.1016/j.compag.2019.105061
98. Zhou, W., Wang, J., & Tang, H. (2019). Structure optimization of cam executive component and analysis of precisely applying deep-fertilization liquid fertilizer. Int J Agric & Biol Eng, 12(4), 104-109. https://doi.org/10.25165/j.ijabe.20191204.4865
99. Zubko, V. M. (2021). Doslidzhennia vplyvu chystoty posivnoi borozny na vrozhainist pry vyroshchuvanni kukurudzy na zerno [Study of the influence of the purity of the sowing frow on the yield in cultivation of maize on grain]. Bulletin of Sumy National Agrarian University. The series: Mechanization and Automation of Production Processes, 4(46), 11-17 [in Ukrainian]. https://doi.org/10.32845/msnau.2021.4.2
100. Zubko, V. M., Khvorost, T. V., & Litvinenko, Y. Y. (2021). Doslidzhennia efektyvnosti vykorystannia systemy smart firmer za vyroshchuvannia kukurudzy na zerno [Research of efficiency of using the smartfirmer system in growing corn on grain]. Bulletin of Sumy National Agrarian University. The Series: Mechanization and Automation of Production Processes, 3(45), 18-23 [in Ukrainian]. https://doi.org/10.32845/msnau.2021.3.3