CONSTRUCTION AND CHARACTERIZATION OF STEE DELETION MUTANT OF SALMONELLA PULLORUM
Abstract
Salmonella Pullorum (S. Pullorum) is one of the host-restricted serotypes causing systemic infection in poultry. After S. Pullorum infection, chicks and turkeys usually have acute systemic infection. The main clinical symptoms are white dysentery and dyspnea, and the mortality can be as high as 100%. In adult chickens, local and chronic infections are the most common without obvious clinical symptoms, and can be transmitted vertically to offspring through ovary. Although the use of antibiotics reduces the death of sick chickens, it can not completely eliminate the pathogenic microorganisms in hosts, and is prone to public health problems such as drug resistance and drug residues. No study has ever reported the role of steE in HD-11 cells infected by S. Pullorum. The growth and biochemical characteristics of S. Pullorum ΔsteE were similar to that of S. Pullorum. Furthermore, we also observed the effects of steE on cell proliferation and apoptosis in S. Pulloruminfected HD-11 cells.In order to define the pathogenicity of steE gene of S. Pullorum, the steE deletion strain of S. Pullorum and its complemented strain were successfully constructed, and then its characterization were analyzed. S. Pullorum was preserved by the microbiology laboratory of the college of animal science and veterinary medicine, Henan Institute of Science and Technology. The pKD4, pKD46 and pCP20 or pBR322 plasmids were used for the λ-Red recombination system or complementary strain. The biological characteristics of S. Pullorum ΔsteE were consistent with those of its parent strain S. Pullorum and complementary strain S. Pullorum ΔsteE (pBR322-steE). Construction and confirmation of the ΔsteE strain. To identify the roles of steE in S. Pullorum, the steE deletion mutant of S. Pullorum was correctly constructed.The virulence test showed S. Pullorum ΔsteE decreased the proliferation and apoptosis of HD-11 cells compared to that of S. Pullorum and S. Pullorum ΔsteE (pBR322-steE). Taken together, our data demonstrate that the deletion of steE in S. Pullorum had no effect the growth and biochemical characteristics, but its proliferation ability decreased significantly in HD-11 cells, which decreased cell apoptosis, indicating that steE was closely related to virulence of S. Pullorum. Altogether, our research suggest that the steE gene was required for S. Pullorum virulence, which laid a foundation for further related research in S. Pullorum vaccine strains.
References
2. Ding, J., Zhou, H., Luo, L., Xiao, L., Yang, K., Yang L., et al. (2021). Heritable gut microbiome associated with Salmonella enterica serovar Pullorum infection in chickens. mSystems, 6:e01192-20. doi: 10.1128/mSystems.01192-20
3. Fei, X., Li, Q., Olsen, JE., Jiao, X. (2020). A bioinformatic approach to identify core genome difference between Salmonella Pullorum and Salmonella Enteritidis. Infect Genet Evol, 85:104446. doi: 10.1016/j.meegid.2020.104446
4. Geng, S., Wang, Y., Xue, Y., Wang, H., Cai, Y., Zhang, J., et al. (2019). The SseL protein inhibits the intracellular NF-κB pathway to enhance the virulence of Salmonella Pullorum in a chicken model. Microb Pathog, 129:1-6. doi: 10.1016/j. micpath.2019.01.035
5. Gulati, A., Shukla, R., Mukhopadhaya, A. (2019). Salmonella effector SteA suppresses proinflammatory responses of the host by interfering with IκB degradation. Front Immunol, 10:2822. doi: 10.3389/fimmu.2019.02822.
6. Gibbs, K. D., Washington, E. J., Jaslow, S. L., Bourgeois, J. S., Foster, M, W., Guo, R., et al. (2019). The Salmonella secreted effector SarA/SteE mimics cytokine receptor signaling to activate STAT3. Cell Host Microbe, 27:129-139.e4. doi: 10.1016/j.chom.2019.11.012
7. Ho, K., Harshey, R. M. (2021). Goodbye PAM: Phage λ’s Red recombination system cripples PAMs and helps dodge CRISPR attacks. Cell Host Microbe, 29:1469-1471. doi: 10.1016/j.chom.2021.09.011
8. Islam, M. S., Hu, Y., Mizan, M. F. R., Yan, T., Nime, I., Zhou, Y., et al. (2020). Characterization of Salmonella phage LPST153 that effectively targets most prevalent Salmonella serovars. Microorganisms, 8:1089-1107. doi: 10.3390/ microorganisms8071089
9. Johnson, R., Mylona, E., and Frankel, G. (2018). Typhoidal Salmonella: distinctive virulence factors and pathogenesis. Cell Microbiol, 20:e12939. doi: 10.1111/cmi.12939
10. Kodama, T., Hiyoshi, H., Okada, R., Matsuda, S., Gotoh, K., Iida, T. (2015). Regulation of vibrio parahaemolyticus T3SS2 gene expression and function of T3SS2 effectors that modulate actin cytoskeleton. Cell Microbiol, 17:183-190. doi: 10.1111/cmi.12408
11. Lawley, T. D., Chan, K., Thompson, L. J., Kim, C. C., Govoni, G. R., Monack, D. M. (2006). Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog, 2:e11. doi: 10.1371/journal. ppat.0020011
12. Lin, Z., Tang, P., Jiao, Y., Kang, X., Li, Q., Xu, X., et al. (2017). Immunogenicity and protective efficacy of a Salmonella Enteritidis sptP mutant as a live attenuated vaccine candidate. BMC Vet Res, 13:194-203. doi: 10.1186/s12917-017-1115-3
13. Li Q, Wang X, Xia J, Yuan Y, Yin C, Xu L, et al. (2018). Salmonella-containing vacuole development in avian cells and characteristic of cigR in Salmonella enterica serovar pullorum replication within macrophages. Vet Microbiol, 223:65–71. doi: 10.1016/j.vetmic.2018.07.013
14. Matos, M., Sommer, F., Liebhart, D., Bilic, I., Hess, M., Hess, C. (2020). An outbreak of Pullorum disease in a young layer parent flock in Austria presented with central nervous system signs. Avian Dis, 65:159-164. doi: 10.1637/ aviandiseases-D-20-00091
15. Niemann, G. S., Brown, R. N., Gustin, J. K., Stufkens, A., Shaikh-Kidwai, A. S., Li, J., et al. (2011). Discovery of novel secreted virulence factors from Salmonella enterica serovar Typhimurium by proteomic analysis of culture supernatants. Infect Immun, 79:33-43. doi: 10.1128/IAI.00771-10
16. Panagi, I., Jennings, E., Zeng, J., Günster, R. A., Stones, C. D., Mak, H., et al. (2020). Salmonella effector SteE converts the mammalian Serine/Threonine kinase GSK3 into a tyrosine kinase to direct macrophage polarization. Cell Host Microbe, 27: 41–53. doi: 10.1016/j.chom.2019.11.002
17. Pham, T. H. M., Brewer, S. M., Thurston, T., Massis, L. M., Honeycutt, J., Lugo, K., et al. (2020). Salmonella-driven polarization of granuloma macrophages antagonizes TNF-mediated pathogen restriction during persistent infection. Cell Host Microbe, 27:54–67. doi: 10.1016/j.chom.2019.11.011
18. Stapels, D. A. C., Hill, P. W. S., Westermann, A. J., Fisher, R. A., Thurston, T. L., Saliba, A. E., et al. (2018). Salmonella persisters undermine host immune defenses during antibiotic treatment. Science, 362:1156–1160. doi: 10.1126/ science.aat7148
19. Ter, Veen. C., Feberwee, A., Augustijn, M., de, Wit. S. (2022). High specificity of the Salmonella Pullorum/Gallinarum rapid plate agglutination test despite vaccinations against Salmonella Enteritidis and Salmonella Typhimurium. Avian Pathol. 51:19-25. doi: 10.1080/03079457.2021.1990854
20. Vaid, R. K., Thakur, Z., Anand, T., Kumar, S., Tripathi, B. N. (2021). Comparative genome analysis of Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum decodes strain specific genes. PLoS One, 16:e0255612. doi: 10.1371/journal.pone.0255612
21. Wang, X. D., Li, C. Y., Jiang, M. M., Li, D., Wen, P., Song, X., et al. (2016). Induction of apoptosis in human leukemia cells through an intrinsic pathway by cathachunine, a unique alkaloid isolated from Catharanthus roseus. Phytomedicine, 23:641-653. doi: 10.1016/j.phymed.2016.03.003
22. Xian, H., Yuan, Y., Yin, C., Wang, Z., Ji, R., Chu, C., et al. (2020). The SPI-19 encoded T6SS is required for Salmonella Pullorum survival within avian macrophages and initial colonization in chicken dependent on inhibition of host immune response. Vet Microbiol, 250:108867. doi: 10.1016/j.vetmic.2020.108867
23. Yin, J., Xia, J., Tao, M., Xu, L., Li, Q., Geng, S., et al. (2016). Construction and characterization of a cigR deletion mutant of Salmonella enterica serovar Pullorum. Avian Pathol, 45:569-575. doi: 10.1080/03079457.2016.1187708
24. Yu, X. J., Liu, M., Holden, D. W. (2016). Salmonella effectors SseF and SseG Interact with mammalian protein ACBD3 (GCP60) to anchor Salmonella-containing vacuoles at the golgi network. mBio, 7:e00474-16. doi: 10.1128/ mBio.00474-16