TOXICOLOGICAL EVALUATION OF FEEDS WITH DIFFERENT LEVELS OF TRACE ELEMENTS USING LUMINESCENT MICROORGANISMS PHOTOBACTERIUM РHOSPHOREUM

Keywords: bioluminescence; feed; trace elements; toxicity; Photobacterium phosphoreum.

Abstract

Toxicological and hygienic assessment of toxic contaminants of various origins (including trace elements) is widely carried out in the countries of Europe, Asia and America. Currently, for these purposes, an important role is played by biotesting using proto- and eukaryotic organisms as test models, with biotests using live bioluminescent bacteria, which are distinguished from others by the fact that the intensity of their glow is measured as a parameter of vital activity, comes to the fore. The purpose of this work was to conduct a toxicological evaluation of feeds with different levels of trace elements using the luminescent microorganisms Photobacterium rhosphoreum. Under the conditions of trace elements research, corn grits, which did not possess toxic properties, were used as a «matrix». Trace elements were used in the form of State standard samples, namely: iron, cobalt, manganese, selenium, nickel, chromium and bromine. As a test culture, a lyophilized culture of Photobacterium phosphoreum (strain IMV B-7071; Sq3) was used, obtained from the Depository of Microorganisms of the Institute of Microbiology and Virology named after D.K. Zabolotny of the National Academy of Sciences of Ukraine (Kyiv). Before introducing trace elements into the feed, the «matrix» was first examined for their content (background). Toxicants were added to the «matrix» in different concentrations, taking into account the «background» indicators (5 series each), which were prepared by diluting in distilled water, depending on the maximum permissible level. As a result of the work, it was established the possibility of using luminescent microorganisms Photobacterium phosphoreum (strain IMV B-7071; Sq3) for rapid toxicological evaluation of feeds with different levels of trace elements, based on a decrease in the intensity of luminescence. However, if for Co, Mn, Ni, Se, Cr and Br under the conditions of the study of feed with the content of trace elements at the maximum residue limits (MRL) (2.0; 120.0; 3.0; 0.5; 1.0 and 10.0 mg/kg, respectively) the feed was characterized as non-toxic, then for Fe according to the MRL (750.0 mg/kg) the feed was characterized as highly toxic, which indicates the need for further studies to study the toxicological characteristics of the trace element in the body of laboratory and productive animals, possibly with further revision (downwards) of the MRL of the relevant pollutant in feed in Ukraine. The prospect of further research in this direction is the toxicological assessment of feed with different levels of pesticides using the luminescent microorganisms Photobacterium rhosphoreum.

References

1. Pohorielov, M. V. (2010). Makro- ta mikroelementy (obmin, patolohiia ta metody vyznachennia): monohrafiia [Macroand microelements (exchange, pathology and methods of determination): monograph]. SumDU, Sumy, Ukrainе, 147 (in Ukrainian).
2. Prashanth, L, Kattapagari, K. K., Chitturi, R. T., Baddam, V. R., & Prasad, L. K. (2015). A review on role of essential trace elements in health and disease. J. NTR Univ. Health Sci. 4(2), 75-85. https://doi.org/10.4103/2277-8632.158577
3. Vincent, J. B. (2019). Effects of chromium supplementation on body composition, human and animal health, and insulin and glucose metabolism. Curr. Opin. Clin Nutr. Metab. Care. 22(6), 483-489. https://doi.org/10.1097/MCO.0000000000000604
4. Calderón Guzmán, D., Juárez Olguín, H., Osnaya Brizuela, N., Hernández Garcia, E., & Lindoro Silva, M. (2019). The Use of Trace and Essential Elements in Common Clinical Disorders: Roles in Assessment of Health and Oxidative Stress Status. Nutr. Cancer. 71(1), 13-20. https://doi.org/10.1080/01635581.2018.1557214 5. Dias, R. S., Montanholi, Y. R., Lopez, S., Smith, B., Miller, S. P., & France, J. (2016). Utilization of macrominerals and trace elements in pregnant heifers with distinct feed efficiencies. J. Dairy Sci. 99(7), 5413-5421. https://doi.org/10.3168/ jds.2015-10796
6. Younus, N., Zuberi, A., Rashidpour, A., & Metón, I. (2020). Dietary cobalt supplementation improves growth and body composition and induces the expression of growth and stress response genes in Tor putitora. Fish Physiol Biochem. 46(1), 371-381. https://doi.org/10.1007/s10695-019-00723-5
7. Vogt, A. S., Arsiwala, T., Mohsen, M., Vogel, M., Manolova, V., & Bachmann, M. F. (2021). On Iron Metabolism and Its Regulation. Int. J. Mol. Sci. 22(9), 4591. https://doi.org/10.3390/ijms22094591
8. Gać, P., Czerwińska, K., Macek, P., Jaremków, A., Mazur, G., Pawlas, K., & Poręba, R. (2021). The importance of selenium and zinc deficiency in cardiovascular disorders. Environ. Toxicol. Pharmacol. 82, 103553. https://doi.org/10.1016/j. etap.2020.103553
9. Orobchenko, O., Koreneva, Y., Paliy, A., Rodionova, K., Korenev, M., Kravchenko, N., Pavlichenko, O., Tkachuk, S., Nechyporenko, O., & Nazarenko, S. (2022). Bromine in chicken eggs, feed, and water from different regions of Ukraine. Potravinarstvo Slovak Journal of Food Sciences, 16, 42–54. https://doi.org/10.5219/1710
10. Balachandran, R. C., Mukhopadhyay, S., McBride, D., Veevers, J., Harrison, F.E., Aschner, M., Haynes, E. N., & Bowman, A. B. (2020). Brain manganese and the balance between essential roles and neurotoxicity. J. Biol. Chem. 295(19), 6312-6329. https://doi.org/10.1074/jbc.REV119.009453
11. Wu, J., Yang, J. J., Cao, Y., Li, H., Zhao, H., Yang, S., & Li, K. (2020). Iron overload contributes to general anaesthesiainduced neurotoxicity and cognitive deficits. J. Neuroinflammation. 17(1), 110. https://doi.org/10.1186/s12974-020-01777-6
12. Raisbeck, M. F. (2020). Selenosis in Ruminants. Vet. Clin. North Am. Food Anim. Pract. 36(3), 775-789. https://doi. org/10.1016/j.cvfa.2020.08.013
13. Magrone, T. (2020). Nickel-Induced Damage: Pathogenesis and Therapeutical Approaches. Endocr. Metab. Immune Disord. Drug Targets. 20(7), 967. https://doi.org/10.2174/1871530320666200707151502
14. Zafalon, R. V. A., Pedreira, R. S., Vendramini, T. H. A, Rentas, M. F., Pedrinelli, V., Rodrigues, R. B. A., Risolia, L. W., Perini, M. P., Amaral, A. R., de Carvalho Balieiro, J. C., Pontieri, C. F. F., & Brunetto, M. A. (2021). Toxic element levels in ingredients and commercial pet foods. Sci. Rep. 11(1), 21007. https://doi.org/10.1038/s41598-021-00467-4
15. Kozhanova, N., Sarsembayeva, N., Lozowicka, B., & Kozhanov, Z. (2021). Seasonal content of heavy metals in the «soil-feed-milk-manure» system in horse husbandry in Kazakhstan. Vet. World. 14(11), 2947-2956. https://doi.org/10.14202/ vetworld.2021.2947-2956
16. Koch, F., Kowalczyk, J., Wagner, B., Klevenhusen, F., Schenkel, H., Lahrssen-Wiederholt, M., Pieper, R. (2021). Chemical analysis of materials used in pig housing with respect to the safety of products of animal origin. Animal. 15(9), 100319. https://doi.org/10.1016/j.animal.2021.100319
17. Chowdhury, R., Ramond, A., O’Keeffe, L. M., Shahzad, S., Kunutsor, S. K., Muka, T., Gregson, J., Willeit, P., Warnakula, S., Khan, H., Chowdhury, S., Gobin, R., Franco, O. H., & Di Angelantonio, E. (2018). Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 362, k3310. https://doi. org/10.1136/bmj.k3310
18. Kurbatska, O. V., & Orobchenko, O. L. (2021а). Express method for determination of general feed toxicity using bioluminescent microorganisms Photobacterium phosphoreum. Scientific and Technical Bulletin оf State Scientific Research Control Institute of Veterinary Medical Products and Fodder Additives аnd Institute of Animal Biology. 22(2), 217–224. https:// doi.org/10.36359/scivp.2021-22-2.24
19. Menz, J., Schneider, M., & Kümmerer, K. (2013). Toxicity testing with luminescent bacteria – characterization of an automated method for the combined assessment of acute and chronic effects. Chemosphere. 93(6). 990–996. https://doi. org/10.1016/j.chemosphere.2013.05.067
20. Fernández-Piñas, F., Rodea-Palomares, I., Leganés, F., González-Pleiter, M., & Angeles Muñoz-Martín, M. (2014). Evaluation of the ecotoxicity of pollutants with bioluminescent microorganisms. Adv Biochem Eng Biotechnol. 145. 65–135. https://doi.org/10.1007/978-3-662-43619-6_3
21. Ma, X. Y., Wang, X. C., Ngo, H. H., Guo, W., Wu, M. N., & Wang, N. (2014). Bioassay based luminescent bacteria: interferences, improvements, and applications. Sci Total Environ. 468–469, 1–11. https://doi.org/10.1016/j. scitotenv.2013.08.028
22. Kutsan, O. T., Orobchenko, O. L., & Kochergin, Yu. A. (2014). Toksiko-biohimichna harakteristika neorganichnih elementiv ta zastosuvannya rentgenofluorestsentnogo analizu u veterinarniy meditsini (navchalnii posybnik), [Toxicbiochemical characteristic of inorganic elements and application of X-ray fluorescence analysis in veterinary medicine (methodical manual)]. Planet Print, Kharkiv, Ukrainе, 300. ISBN 978-966-2046-43-4 (In Ukrainian)
23. Stehnii, B. T., Orobchenko, O. L., & Koreneva, Yu. M. (2021). Diahnostyka ta profilaktyka otruiennia Bromom silskohospodarskoi ptytsi : Metodychni rekomendatsii [Diagnosis and prevention of Bromine poisoning of poultry: Methodical recommendations]. Styl-Yzdat, Kharkiv, Ukrainе, 20. (In Ukrainian)
24. On approval of the List of maximum permissible levels of undesirable substances in feed and feed raw materials for animals of the Ministry of Agrarian Policy of Ukraine; Order, List dated March 19, 2012 No. 131 as amended on October 11, 2017 Order No. 550). (in Ukrainian) https://zakon.rada.gov.ua/laws/show/z0503-12#Text
25. Orobchenko, O. L., Kurbatska, O. V., Kutsan O. T., & Kalashnik N. V. (2020). Nutrient medium for the cultivation of photoluminescent microorganisms Photobacterium Phosphoreum. Declaratory patent of Ukraine for a utility model № 143070 IPC (51) C12N 1/20; applicant and patent holder National Research Center «Institute of Experimental and Clinical Veterinary Medicine»; stated 21.01.2020 (u 2020 00341); publ. 10.07.2020, 13/2020. 4. (In Ukrainian) Спеціалізована БД «Винаходи (корисні моделі) в Україні» (uipv.org)
26. Kurbatska, O. V., & Orobchenko, O.L. (2021b). Ekspres-metodyka vyznachennia zahalnoi toksychnosti kormiv z vykorystanniam fotoliuminestsentnykh mikroorhanizmiv Ph. Phosphoreum. Naukovo-metodychni rekomendatsii [Express methodology for determining the general toxicity of feed using photoluminescent microorganisms Ph. Рhosphoreum. Scientific and methodological recommendations]. Styl-Yzdat, Kharkiv, Ukrainе, 24. (In Ukrainian)
27. Burtseva, O., Kublanovskaya, A., Baulina, O., Fedorenko, T., Lobakova, E. & Chekanova, K. (2020). The strains of bioluminescent bacteria isolated from the White Sea finfishes: genera Photobacterium, Aliivibrio, Vibrio, Shewanella, and first luminous Kosakonia. Journal of Photochemistry and Photobiology B: Biology. 208, 111895. https://doi.org/10.1016/j. jphotobiol.2020.111895
28. Makemson, J. C., & Hastings, J. W. (1982). Iron represses bioluminescence and affects catabolite repression of luminescence in Vibrio harveyi. Current Microbiology. 7, 181–186. https://doi.org/10.1007/BF01568972
29. Sorokina, E. V., Yudina, T. P., Bubnov, I. A., & Danilov, V. S. (2013). Assessment of iron toxicity using a luminescent bacterial test with an Escherichia coli recombinant strain. Microbiology. 82(4), 439–444. https://doi.org/10.1134/ s0026261713040115
30. Kahru, A. (1993). In Vitro Toxicity Testing Using Marine Luminescent Bacteria (Photobacterium phosphoreum): the Biotox™ test. Alternatives to Laboratory Animals. 21(2), 210–215. https://doi.org/10.1177/026119299302100216
31. Mohseni, M., Abbaszadeh, J., Maghool, S.-S., & Chaichi, M.-J. (2018). Heavy metals detection using biosensor cells of a novel marine luminescent bacterium Vibrio sp. MM1 isolated from the Caspian Sea. Ecotoxicology and Environmental Safety. 148, 555–560. https://doi.org/10.1016/j.ecoenv.2017.11.002
32. Teodorovic, I., Planojevic, I., Knezevic, P., Radak, S., & Nemet, I. (2009). Sensitivity of bacterial vs. acute Daphnia magna toxicity tests to metals. Open Life Sciences. 4(4), 482–492. https://doi.org/10.2478/s11535-009-0048-7
33. Reimer, P. S. (1999) Environmental effects of manganese and proposed freshwater guidelines to protect aquatic life in British Columbia [MSc thesis]. Vancouver, B.C., University of British Columbia. 56. https://www2.gov.bc.ca/assets/gov/ environment/air-land-water/water/waterquality/water-quality-guidelines/approved-wqgs/manganese-tech.pdf
34. Arias-Barreiro, C. R., Okazaki, K., Koutsaftis, A., Inayat-Hussain, S. H., Tani, A., Katsuhara, M., Kimbara, K., & Mori, I. C. (2010). A Bacterial Biosensor for Oxidative Stress Using the Constitutively Expressed Redox-Sensitive Protein roGFP2. Sensors. 10(7), 6290–6306. https://doi.org/10.3390/s100706290
35. Attar, H., & Afshar, S. (2010). Design of Sensible Biosensor for Rapid Detection of Biocides in Potable Water. Asian Journal of Biotechnology. 2, 120-126. https://doi.org/10.3923/ajbkr.2010.120.126
36. Yang, J., Hu, S., Liao, A., Weng, Y., Liang, S., & Lin, Y. (2022). Preparation of freeze-dried bioluminescent bacteria and their application in the detection of acute toxicity of bisphenol A and heavy metals. Food Sci Nutr. 10(6), 1841–1853. https://doi.org/10.1002/fsn3.2800
37. Lopez-Roldan, R., Kazlauskaite, L., Ribo, J., Riva, M. C., González, S., & Cortina, J. L. (2012). Evaluation of an automated luminescent bacteria assay for in situ aquatic toxicity determination. Science of The Total Environment, 440, 307–313. https://doi.org/10.1016/j.scitotenv.2012.05.043
38. Garcia, M. T., Gathergood, N., & Scammells, P. J. (2005). Biodegradable ionic liquids : Part II. Effect of the anion and toxicology. Green Chemistry. 7(1), 9. https://doi.org/10.1039/b411922c
39. Baran, A., Tarnawski, M., Koniarz, T., & Szara, M. (2019). Content of nutrients, trace elements, and ecotoxicity of sediment cores from Rożnów reservoir (Southern Poland). Environmental Geochemistry and Health. 41, 2929–2948 https:// doi.org/10.1007/s10653-019-00363-x
40. Belz, R. G., & Cedergreen, N. (2010). Parthenin hormesis in plants depends on growth conditions. Environmental and Experimental Botany. 69(3), 293–301. https://doi.org/10.1016/j.envexpbot.2010.04.010
Published
2022-10-14
How to Cite
Kurbatska, O. V., & Orobchenko, O. L. (2022). TOXICOLOGICAL EVALUATION OF FEEDS WITH DIFFERENT LEVELS OF TRACE ELEMENTS USING LUMINESCENT MICROORGANISMS PHOTOBACTERIUM РHOSPHOREUM. Bulletin of Sumy National Agrarian University. The Series: Veterinary Medicine, (2(57), 26-37. https://doi.org/10.32845/bsnau.vet.2022.2.4