THE STATE OF METABOLIC PARAMETERS OF THE BLOOD IN WHITE RATS UNDER CONDITIONS OF LONG-TERM ORAL ADMINISTRATION OF LANTANUM ORTHOVANADATE NANOPARTICLES UNDER FOOD STRESS
Abstract
Based on the proven protective properties of nanoparticles of lanthanum orthovanadate activated by europium (NP LaVO4:Eu3+), a possible direction of their application is the use as a feed additive, since inorganic (oxides, chlorides, nitrates) and organic (citrates, fodder yeast, enriched) lanthanum is already are used in the world animal husbandry, positively affecting the growth qualities of pigs and broiler chickens, egg productivity of laying hens, improve the daily gain and milk production of cattle, the digestibility of nutrients in the diet of sheep. However, the effectiveness of the feed additive implies a long-term introduction into the body of animals and should be confirmed by an improvement in the state of the body under conditions of a stress factor. Therefore, the purpose of this work was to study the state of metabolic parameters of the blood of rats with subchronic oral intake of lanthanum orthovanadate nanoparticles against the background of feed stress. Experimental samples of NP LaVO4:Eu3+ (rod-shaped geometry; size 8×80 nm; initial concentration 1.0 g/dm3) were used in the work. Experimental studies on rats were carried out on the basis of the vivarium of the NSC «IEKVM». The object of research was 140 mature male Wistar rats with an initial weight of 220–230 g were used as the object of research. Four groups of animals, 35 rats each, were formed according to the principle of analogues. During the experiment, animals of the control group received drinking water without additives; rats of the experimental group I were fed with a solution of NP LaVO4:Eu3+ at a dose of 0.2 mg/dm3 (≈0.03 mg/kg of body weight); II experimental group - at a dose of 1.0 mg/dm3 (≈ 0.15 mg/kg body weight) and rats III experimental group – at a dose of 2.0 mg/dm3 (≈ 0.30 mg/kg body weight). Drinking was carried out for 56 days, then it was completed and the rats were observed for another 14 days. An unbalanced diet for nutrients was used as a stress factor. As a result of the work, it was found that under feed stress NP LaVO4:Eu3+ in doses of 0.2 and 1.0 mg/dm3 of drinking water (≈0.03 and ≈0.15 mg/kg of body weight) have an adaptogenic effect on the body of whites. rats with the optimal period of application – 56 and 28 days, respectively. However, long-term oral administration of NP LaVO4:Eu3+ at a dose of 2.0 mg/dm3 of drinking water (≈0.30 mg/kg of body weight) in rats has a hepato(cyto-)toxic effect, which is irreversible and is accompanied. The prospect of further research in this direction is to determine the distribution of Lanthanum in the body of white rats under food stress.
References
2. Bono, D. P. (1994). Free radicals and antioxidants in vascular biology: the roles of reaction kinetics, environment and substrate turnover. QJM, 87(8), 445–453.
3. Borysevych, V. B. (2009). Nanotekhnolohiia u veterynarnii medytsyni (vprovadzhennia innovatsiinykh tekhnolohii) [Nanotechnology in veterinary medicine (introduction of innovative technologies)]. K.: TOV Nanomaterialy i nanotekhnolohii. 232. (in Ukrainian)
4. Cai, L., Nyachoti, C. M., & Kim, I. H. (2018). Impact of rare earth element-enriched yeast on growth performance, nutrient digestibility, blood profile, and fecal microflora in finishing pigs. Canadian Journal of Animal Science, 98(2), 347–353. https://doi.org/10.1139/cjas-2017-0089
5. Cai, L., Park, Y. S., Seong, S. I., Yoo, S. W., & Kim, I. H. (2015). Effects of rare earth elements-enriched yeast on growth performance, nutrient digestibility, meat quality, relative organ weight, and excreta microflora in broiler chickens. Livestock Science, 172, 43–49. https://doi.org/10.1016/j.livsci.2014.11.013
6. Chystiakova, E.Ie., Smolienko, N.P., Bielkina, I.O., Korenieva, Ye.M., Klochkov, V.K. & Velychko N.F. (2020). Vykorystannia nanochastynok ortovanadativ ridkisnozemelnykh elementiv dlia korektsii reproduktyvnykh rozladiv v eksperymenti [The use of orthovanadate nanoparticles of rare earth elements for the correction of reproductive disorders in an experiment]. Zdobutky ta dosiahnennia prykladnykh ta fundamentalnykh nauk XXI stolittia: materialy mizhnarodnoi naukovoi konferentsii (7 serpnia, Cherkasy, Ukraina: MTsND), 1, 112-115. https://doi.org/10.36074/07.08.2020.v1.10 (in Ukrainian)
7. Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. Official Journal of the European Communities L 358, 1986, 1–29.
8. Diet. Meat Free Rat and Mouse Diet (SF00-100) (2015): URL: https://www.specialtyfeeds.com/new/wp-content/uploads/2022/06/meat_free_rm.pdf
9. DSTU 4687:2006. Kombikormy, premiksy, vitaminni preparaty, produktsiia ptakhivnytstva. Metody vyznachennia vitaminiv A, E, V2 ta karotynoidiv [Compound feed, premixes, vitamin preparations, poultry products. Methods of determination of vitamins A, E, B2 and carotenoids]. Kyiv: Derzhspozhyvstandart Ukrainy, 20. (in Ukrainian)
10. DSTU EN 14082:2019. Produkty kharchovi. Vyznachennia vmistu svyntsiu, kadmiiu, tsynku, midi, zaliza ta khromu metodom atomno-absorbtsiinoi spektrometrii (AAS) pislia sukhoho ozolennia [Food products. Determination of lead, cadmium, zinc, copper, iron and chromium content by atomic absorption spectrometry (AAS) after dry ashing] (EN 14082:2003, IDT). Kyiv: Derzhspozhyvstandart Ukrainy, 18. (in Ukrainian)
11. DSTU ISO 5983:2003. Kormy dlia tvaryn. Vyznachennia vmistu azotu i obchyslennia vmistu syroho bilka metodom Kieldalia [Fodder for animals. Determination of nitrogen content and calculation of crude protein content by the Kjeldahl method.]. Vved. 2005-07-01. Kyiv : Derzhspozhyvstandart Ukrainy, 2007, 12. (in Ukrainian)
12. DSTU ISO 6492:2003. Kormy dlia tvaryn. Vyznachennia vmistu zhyru [Fodder for animals. Determination of fat content]. Vved. 2005-07-01. Kyiv : Derzhspozhyvstandart Ukrainy, 2005, 12. (in Ukrainian)
13. DSTU ISO 6865:2004. Kormy dlia tvaryn. Vyznachennia vmistu syroi klitkovyny metodom promizhnoho filtruvannia [Fodder for animals. Determination of the content of crude fiber by the method of intermediate filtration]. Vved. 2004-11-30. Kyiv : Derzhspozhyvstandart Ukrainy, 2004, 14. (in Ukrainian)
14. Durmuş, O., & Bölükbaşı, Ş. C. (2015). Biological activities of lanthanum oxide in laying hens. The Journal of Applied Poultry Research, pfv052. https://doi.org/10.3382/japr/pfv052
15. Dyomshina, O. O., Ushakova, G. O., & Stepchenko, L. M. (2017). The effect of biologically active feed additives of humilid substances on the antioxidant system in liver mitochondria of gerbils. Reg. Mech. Biosyst, 8(2), 185–190.
16. European convention for the protection of vertebrate animals used for experimental and other scientific purposes. Council of Europe. Strasbourg, 1986, 53.
17. Falfushynska, H. I., Hnatyshyna, L. L., Turta, O. O., Stoliar, O. B., Mitina, N. Ie., Zaichenko, O. S. & Stoika, R. S. (2013). Funktsii metalotioneiniv na systemy antyoksydantnoho zakhystu za dii kobalt- ta tsynkvmisnykh nanokompozytiv na karasia sribliastoho Carassius auratus gibelio [Functions of metallothioneins on antioxidant protection systems under the action of cobalt- and zinc-containing nanocomposites on silver crucian carp Carassius auratus gibelio]. Ukr Biochem J, 85(3), 52–61. https://doi.org/10.15407/ubj85.03.052 (in Ukrainian)
18. Fang J, Huang Y, & Gong H. (1994). A study of feeding rare earth elements to black-bone silky fowl. Fujian J. Husb. Vet., 3, 28-9.
19. Goc, A. (2006). Biological activity of vanadium compounds. Open Life Sciences, 1(3). 314–332 https://doi.org/10.2478/s11535-006-0029-z
20. Greulich, C., Braun, D., Peetsch, A., Diendorf, J., Siebers, B., Epple, M., & Köller, M. (2012). The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Advances, 2(17), 6981. doi:10.1039/c2ra20684f
21. Grygorova, G. V., Klochkov, V. K., Sedyh, O. O., & Malyukin, Yu. V. (2013). Coagulation of Colloidal Solutions of Rod-Like Luminescent Nanoparticles nLaVO4: Eu3+. Chemistry, Physics and Technology of Surface, 4(2), 202-210.
22. Gruzewska, K., Michno, A., Pawelczyk, T., & Bielarczyk, H. (2014). Essentiality and toxicity of vanadium supplements in health and pathology. J. Physiol. Pharmacol. 65(5), 603-611.
23. Jia, H. Y., Liu, Y., Zhang, X. J., Han, L., Du, L. B., Tian, Q., & Xu, Y. C. (2009). Potential Oxidative Stress of Gold Nanoparticles by Induced-NO Releasing in Serum. Journal of the American Chemical Society, 131(1), 40–41. https://doi.org/10.1021/ja808033w
24. Joshi, M., Sodhi, K. S., & Pandeyetal, R. (2014). Cancer chemotherapy and hepatotoxicity: anupdate. IndoAm J Pharm Res, 4(6), 2976–2984.
25. Klochkov, V. K., Grigorova, A. V., Sedyh, O. O. & Yu.V. Malyukin (2012). Characteristics of nLnVO4 : Eu3+(Ln = La, Gd, Y, Sm) sols with nanoparticles of different shapes and sizes. J. Appl. Spectrosc., 79(5), 726-730. https://doi.org/10.1007/s10812-012-9662-7
26. Klochkov, V. K., Malyshenko, A. I., Sedykh, O. O., & Y. V. Malyukin (2011). Wet chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO4 : Eu3+(Re = La, Gd, Y) with rodlike and spindlelike shape. Functional materials, 18(1), 111-115. http://dspace.nbuv.gov.ua/handle/123456789/135437
27. Kutsan, O. T., Romanko, M. Ie., Orobchenko, O. L., & Ushkalov, V. O. (2016). Toksyko-biokhimichna otsinka nanometaliv za systemnymy markeramy pry zastosuvanni u veterynarnii medytsyni [Toxico-biochemical assessment of nanometals by systemic markers when used in veterinary medicine]. Kharkiv: NTMT. 328. (in Ukrainian)
28. Liu, Q., Wang, C., Huang, Y. X., Dong, K. H., Yang, W. Z., & Wang, H. (2008). Effects of lanthanum on rumen fermentation, urinary excretion of purine derivatives and digestibility in steers. Animal Feed Science and Technology, 142(1-2), 121–132. https://doi.org/10.1016/j.anifeedsci.2007.08.002
29. Maliukina, M. Iu., Piliai, L. V., Siedykh, O.O., Klochkov, V. K., & Kavok, N.S. (2018). Ahrehatsiina stiikist nanochastynok na osnovi ridkisnozemelnykh elementiv v riznomu mikrootochenni ta biolohichnykh seredovyshchakh [Aggregation stability of nanoparticles based on rare earth elements in various microenvironments and biological environments]. Biofizychnyi visnyk, (40), 5-16. https://doi.org/10.26565/2075-3810-2018-40-01 (in Ukrainian)
30. Marques, G. L., Neto, F. F., & Oliveira, C. A. (2015). Oxidative damage in the aging heart: An experimental rat model. The Open Cardiovasc. Med. J., 9, 78–82.
31. Oliver, A. E., Crowe, L. M., & Crowe, J. H. (1998). Method for dehydration-tolerance: depression of the phase transition temperature in dry membranes and carbohydrate vitrification. Seed Sci Res, 8(2), 211–221.
32. Prokopiuk V.Yu., Tkachenko, A.S., Onishchenko A.I…. Klochkov, V.K. (2022). LaVO4: Eu3+ nanoparticles show no genotoxicity on fibroblast cultures. The International research and practice conference “Nanotechnology and nanomaterials” (NANO-2022). Abstract Book of participants of the International research and practice conference, 25–27 August 2022, Lviv. Edited by Dr. Olena Fesenko. Kyiv: LLC APF POLYGRAPH SERVICE, 238.
33. Prylutska, S. V., Rotko, D. M., Prylutskyi, Yu. I., & Rybalchenko, V. K. (2012). Toksychnist vuhletsevykh nanostruktur u systemakh in vitro ta in vivo [Toxicity of carbon nanostructures in in vitro and in vivo systems]. Such Probl Toks Kharch Khim Bezpeky, 3–4(58–59), 49–57. (in Ukrainian)
34. Prylutska, S. V., Grynyuk, I. I., Matyshevska, O. P., Prylutskyy, Y. I., Ritter, U., & Scharff, P. (2008). Antioxidant Properties of C60 Fullerenes in vitro. Fuller, Nanotub Carbon Nanostruct, 16(5-6), 698–705. https://doi.org/10.1080/15363830802317148
35. Reka, D., Thavasiappan, V., Selvaraj, P., Arivuchelvan, A. & Visha, P. (2019). Influence of rare earth elements on production performance in post peak layer chickens Journal of Entomology and Zoology Studies, 7(2), 292-295.
36. Renner, L., Schwabe, A., Döll, S., Höltershinken, M., & Dänicke, S. (2011). Effect of rare earth elements on beef cattle growth performance, blood clinical chemical parameters and mitogen stimulated proliferation of bovine peripheral blood mononuclear cells in vitro and ex vivo. Toxicology Letters, 201(3), 277–284. https://doi.org/10.1016/j.toxlet.2011.01.014
37. Rosenberger, G. (1990). Die klinische Untersuchung des Rindes / G. Dirksen, H.‑D. Gründer, M. Stöber (Hrsg.). 3 Aufl. Berlin ; Hamburg : Paul Parey, 1990, 531.
38. Russel, N. J., & Fukunga, N. A. (1990). Comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol Rev, 75(2–3), 171–182.
39. Scibior, A., Pietrzyk, L., Plewa, Z., & Skiba, A. (2020). Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. Journal of Trace Elements in Medicine and Biology, 126508. https://doi.org/10.1016/j.jtemb.2020.126508
40. Serova, D., Taran, O., & Domshyna, O. (2016). Biolohichna aktyvnist preparativ na osnovi huminovykh rechovyn u pechintsi pishchanok [Biological activity of preparations based on humic substances in the liver of gerbils]. Visn. Dnipr. un–tu. Biolohiia, Ekolohiia, 24(2), 410–415. (in Ukrainian)
41. Shan, H., Yan, R., & Diaoetal, J. (2015). Involvement of caspases and their upstream regulators in myocardial apoptosis in a rat model of selenium deficiency-induced dilated cardiomyopathy. J Trace Elements Med Biol, 31, 85–91.
42. Stattia 26 Zakonu Ukrainy № 5456-VI vid 16.10.2012 r. (2012). «Pro zakhyst tvaryn vid zhorstokoho povodzhennia» [On the protection of animals from cruel treatment]. (in Ukrainian)
43. Stegnij, B.T., Kovalenko, L.V., Roman'ko, M.Je., Ushkalov, V.O., Dolec'kyj, S.P., Bojko, V.S., Krotovs'ka, Ju.M. & Matjusha, L.V. (2009). Metodychni rekomendacii' «Metody perekysnogo okysnennja lipidiv ta jogo reguljacija u biologichnyh ob’jektah». [Methodical recommendations “Methods of peroxide oxidation of lipid and that regulation in biological processes”]. 64. (in Ukrainian)
44. Tariq, H., Sharma, A., Sarkar, S., Ojha, L., Pal R.P., & Mani, V. (2020). Perspectives for rare earth elements as feed additive in livestock — A review. Asian-Australas J. Anim. Sci., 33(3), 373-381. https://doi.org/10.5713/ajas.19.0242
45. Vlizlo, V. V., Fedoruk, R. S., & Ratych, I. B. (2012). Laboratorni metody doslidzhen u biolohii, tvarynnytstvi ta veterynarnii medytsyni : dovidnyk [Laboratory methods of research in biology, animal husbandry and veterinary medicine: a handbook] / pid red. Vlizla V.V., Lviv, SPOLOM, 764. (in Ukrainian)
46. Vrček, I. V., Žuntar, I., Petlevski, R., Pavičić, I., Dutour Sikirić, M., Ćurlin, M., & Goessler, W. (2016). Comparison ofin vitrotoxicity of silver ions and silver nanoparticles on human hepatoma cells. Environmental Toxicology, 31(6), 679–692. https://doi.org/10.1002/tox.22081
47. Wang, M.Q., Xu, Z.R. (2003). Effect of supplemental lanthanum on the growth performance of pigs. Asian-Australas. J. Anim. Sci.., 16, 1360-1363. https://doi.org/10.5713/ajas.2003.1360
48. Wu J, Zhang Z, & Yan J. (1994). An inital study on effect of adding rare earth element on productivity of egg laying breeder hens. Ning. Xia Sci. Technol. Farming For., 4, 36-8.
49. Xun, W., Shi, L., Hou, G., Zhou, H., Yue, W., Zhang, C., & Ren, Y. (2014). Effect of Rare Earth Elements on Feed Digestibility, Rumen Fermentation, and Purine Derivatives in Sheep. Italian Journal of Animal Science, 13(2), 3205. https://doi.org/10.4081/ijas.2014.3205