GENERAL CHARACTERISTICS OF ERYTHROCYTES AND HEMOGLOBIN OF POULTRY BLOOD (OVERVIEW)
Abstract
The review study is devoted to the study of the characteristics of erythrocytes in different types of poultry: chickens, turkeys, geese, and quails. An analysis of various scientific works of many domestic and foreign authors devoted to the morphological and functional characteristics of erythrocytes, such as the number, size, and content of hemoglobin, is provided. In the blood of birds, vital processes take place, such as the transport of oxygen and nutrients, the provision of immune protection and the maintenance of homeostasis, which are critically important for their intensive metabolism. In the conditions of industrial breeding, where birds are exposed to high loads, the blood test helps to monitor the physiological state and productivity. One of the distinguishing features of the circulatory system of birds is the presence of a nucleus in erythrocytes, which distinguishes them from similar mammalian cells and promotes higher metabolic activity. This work focuses on the analysis and summarization of various scientific works of many domestic and foreign authors, and the unification of the data provided by them, the review is focused on the topic of comparison of erythrocytes of chickens, turkeys, geese and quails, analyzing their morphological and quantitative indicators according to different authors. The results of the data analysis show that geese have the largest size of erythrocytes and the largest amount of hemoglobin, which helps to ensure their need for oxygen during prolonged exercise. Quail, on the other hand, have smaller cells and a lower hemoglobin content, which corresponds to their moderate energy needs. Chickens and turkeys are characterized by intermediate indicators that provide their physiological needs. The study of erythrocytes of different types of poultry is an important diagnostic tool for assessing their health and adaptation to environmental conditions. Further research in this area will allow for the development of more effective strategies for maintaining and increasing the productivity of poultry. In the work, a comparative analysis of the obtained data was carried out and conclusions were drawn about the influence of the size of the bird, its metabolic activity and conditions of keeping on the composition of the blood. The results of the research can be useful for veterinary medicine and poultry farming, allowing to optimize the conditions of poultry keeping.
References
Adams, D., Gruber, E., Sather, H., Correa, M., & Crespo, R. (2022). Evaluation of growing turkey blood biochemistry panel measured using the VetScan VS2. Poultry, 1 (2), 138-146. https://doi.org/10.3390/poultry1020012
Amjad, R., Ruby, T., Ali, K., Asad, M., Imtiaz, A., Masood, S., Saeed, M. Q., Arshad, M., Talib, S., Alvi, Q. A., Khan, A., & Sharif, M. M. (2024). Exploring the effects of noise pollution on physiology and ptilochronology of birds. PloS one, 19 (6), e0305091. https://doi.org/10.1371/journal.pone.0305091
Ardıçoğlu Akışın, Y., & Akar, N. (2020). Platelet Satellitism. Turkish journal of hematology: official journal of Turkish Society of Hematology, 37 (1), 55–56. https://doi.org/10.4274/tjh.galenos.2019.2019.0171
Avdosieva, O. V., Koval, O. V., & Skidan, M. V. (2019). The influence of bacteriophages on the biochemical parameters of the blood of broilers. Scientific Bulletin, 3 (1), 30–35. https://doi.org/10.21303/2504-5671.2019.001170
Baier, D., Müller, T., Mohr, T., & Windberger, U. (2021). Red Blood Cell Stiffness and Adhesion Are Species-Specific Properties Strongly Affected by Temperature and Medium Changes in Single Cell Force Spectroscopy. Molecules (Basel, Switzerland), 26 (9), 2771. https://doi.org/10.3390/molecules26092771
Beacon, TH, & Davie, JR (2023). Chicken Erythrocyte: Epigenomic Regulation of Gene Activity. International journal of molecular sciences, 24 (9), 8287. https://doi.org/10.3390/ijms24098287
Benton, E. H., Morgan, G. W., Thaxton, P., Parkhurst, C. R., & Shambley, M. O. (1977). Antibody responses to
xenogeneic red blood cell challenge in the Japanese quail. Immunological communications, 6 (3), 259–265. https://doi. org/10.3109/08820137709050796
Bertram, EM, Jilbert, AR, & Kotlarski, I. (1998). Characterization of duck thrombocytes. Research in veterinary science, 64 (3), 267–270. https://doi.org/10.1016/s0034-5288(98)90139-4
Bódi, I., Nagy, N., Sinka, L., Igyártó, BZ, & Oláh, I. (2009). Novel monoclonal antibodies recognize guinea fowl thrombocytes. Acta veterinaria Hungarica, 57 (2), 239–246. https://doi.org/10.1556/AVet.57.2009.2.5
Boiko, N. I., Boiko, Yu. V., Kokhanii, R. A., & Mykolaichuk, R. p. (2013). Osoblyvosti zaboru krovi u ptytsi ta farbuvannia mazkiv. [Peculiarities of blood sampling in poultry and staining of smears]. Modern poultry farming, (11), 18-21. (in Ukrainian)
Boiko, N. I., Boiko, Yu. V., Konakhii, R. V., & Mykolaichuk, R. p. (2013). Vyvchennia morfolohii klityn krovi kurei. [Study of the morphology of blood cells in chickens]. Modern poultry farming, (12), 18-22. (in Ukrainian)
Borysevych B., Dzymira S., Lisova V., Kotliarov Ye. (2023). Morfolohichni zminy tonkoi kyshky bryzhi kishok pry infektsiinomu perytoniti. [Morphological changes in the small intestine of the mesentery of cats with infectious peritonitis]. Ukrainian Journal of Veterinary Sciences, 14 (4), 23-39. https://doi.org/10.31548/veterinary4.2023.23:contentReference[oaicite: 2]{index=2}. (in Ukrainian)
Bublyk, O. (2022). Yak rozshyfruvaty biokhimichni pokaznyky krovi ptytsi. [How to interpret the biochemical parameters of the blood of a bird]. AgroTimes. (in Ukrainian)
Buonocore, F., Randelli, E., Trisolino, P., Facchiano, A., de Pascale, D., & Scapigliati, G. (2014). Molecular characterization, gene structure and antibacterial activity of a g-type lysozyme from the European sea bass (Dicentrarchus labrax L.). Molecular immunology, 62 (1), 10–18. https://doi.org/10.1016/j.molimm.2014.05.009
Campagna, L., & Toews, D. P. L. (2022). The genomics of adaptation in birds. Current biology : CB, 32(20), R1173–R1186. https://doi.org/10.1016/j.cub.2022.07.076
Campbell TW (2015). Evaluation of the blood film. The veterinary clinics of North America. Exotic animal practice, 18 (1), 117–135. https://doi.org/10.1016/j.cvex.2014.09.001
Chumachenko V.E. Vyznachennia pryrodnoi rezystentnosti ta obminu rechovyn silskohospodarskykh tvaryn. [Determination of natural resistance and metabolism of agricultural animals]. Urozhai, 1990.- 200 s . (in Ukrainian)
Daniel Paredes López, Rizal Robles Huaynate and Richard Valles Tananta, (2018). A comparative evaluation of the hematological parameters, biochemical profile and chemical composition of eggs of Creole and Hy-line Brown laying hens. Livestock Research for Rural Development. 30 (1) 2018. https://lrrd.cipav.org.co/lrrd30/1/fz.de30003.html
Davis, RL, Choi, G., Kuiken, T., Quéré, P., Trapp, S., Short, KR, & Richard, M. (2018). The culture of primary duck endothelial cells for the study of avian influenza. BMC microbiology, 18(1), 138. https://doi.org/10.1186/s12866-018-1307-4
Demchuk, M. V., Kochan, T. V., & Tkach, A. V. (2016). Biokhimichnyi sklad krovi kurei-nesuchok produktyvnoho periodu. [Biochemical composition of the blood of laying hens during the productive period]. Podilsky Visnyk, 1, 56–61. https://journals.pdu.khmelnitskiy.ua (in Ukrainian)
Doley, PJ, Sarma, K., Kalita, PC, Goswami, R., Kalita, A., Sarkar, R., Gollahalli Eregowda, C., Roychoudhary, P., & Choudhary, OP (2023). Ultrastructural characteristics of the blood cells of chickens commonly reared under backyard poultry farming in Mizoram, India. Anatomia, histologia, embryologia, 52 (2), 223–233. https://doi.org/10.1111/ahe.12874
Doley, PJ, Sarma, K., Kalita, PC, Talukdar, M., Kalita, A., Sarkar, R., & Choudhary, P. (2024). Light microscopic
morphology of blood cells of non-descript indigenous Zoar chicken of Mizoram, India. Anatomia, histologia, embryologia, 53 (3), e13054. https://doi.org/10.1111/ahe.13054
Egbuniwe, I. C., Uchendu, C. N., & Obidike, I. R. (2021). Ameliorative effects of betaine and ascorbic acid on endocrine and erythrocytic parameters of sexually-maturing female Japanese quails during the dry season. Journal of thermal biology, 96, 102812. https://doi.org/10.1016/j.jtherbio.2020.102812
Eidinger, D., & Garrett, TJ (1972). Studies of the regulatory effects of sex hormones on antibody formation and stem cell differentiation. The Journal of experimental medicine, 136 (5), 1098–1116. https://doi.org/10.1084/jem.136.5.1098
Fulton, JE, Briles, WE, & Lamont, SJ (1990). Chicken A blood group system antigens: molecular characteristics and lack of expression on lymphocytes. Animal genetics, 21 (4), 401–410. https://doi.org/10.1111/j.1365-2052.1990.tb01984.x
Genovese, KJ, He, H., Swaggerty, CL, & Kogut, MH (2013). The avian heterophil. Developmental and comparative immunology, 41 (3), 334–340. https://doi.org/10.1016/j.dci.2013.03.021
Guzman, D. A., Satterlee, D. G., Kembro, J. M., Schmidt, J. B., & Marin, R. H. (2009). Effect of the density of conspecifics on runway social reinstatement behavior of male Japanese quail genetically selected for contrasting adrenocortical responsiveness to stress. Poultry science, 88 (12), 2482–2490. https://doi.org/10.3382/ps.2009-00156
Hadzalo, I. V., & Diakiv, O. I. (2021). Vplyv vitaminnoi ta mikroelementnoi zabezpechenosti na yakist husiachykh yaiets. [The influence of vitamin and trace element provision on the quality of goose eggs]. Bulletin of the Lviv National University of Veterinary Medicine and Biotechnology named after S.Z. Gzhitskoho, 79, 140–144. (in Ukrainian)
Hassan, S., Habashy, W., Ghoname, M., & Elnaggar, A. (2023). Blood hematology and biochemical of four laying hen strains exposed to acute heat stress. International journal of biometeorology, 67(4), 675–686. https://doi.org/10.1007/s00484-023-02445-z
Hoak JC (1994). Stearic acid, clotting, and thrombosis. The American journal of clinical nutrition, 60 (6 Suppl), 1050S–1053S. https://doi.org/10.1093/ajcn/60.6.1050S
Holubtsova, M. V. (2013). Dynamika biokhimichnykh pokaznykiv krovi kurei pry asotsiatyvnykh invaziiakh. [Dynamics of biochemical indicators of blood of chickens during associative invasions]. Bulletin of the Poltava State Agrarian Academy, (1), 174–176. (in Ukrainian)
Hunchak, A. V., Ratych, I. B., Andrieieva, L. V., Sirko, Ya. M., & Stoianovska, H. M. (2007). Rol vitaminu E v hodivli ptytsi. Biolohiia tvaryn. [The role of vitamin E in poultry nutrition. Biology of animals]. –Lviv, 9 (1-2), 70-77. (in Ukrainian)
I. O. Zhukova, N. O. Bazdyrieva & I. O. Kostiuk (2018). Morfoloho-biokhimichni pokaznyky krovi husei pislia
dehelmintyzatsii brovermektynom i dodavannia do ratsionu maklei sertsevydnoi ta roslynnykh dzherel bioflavonoidiv. [Morphological and biochemical indicators of the blood of geese after deworming with brovermectin and addition to the diet of maclea heart-shaped and plant sources of bioflavonoids]. Scientific bulletin of S.Z. Lviv National University of Veterinary Medicine and Biotechnology. Gzhitskoho, 20 (83), 396-400. (in Ukrainian)
Jin, Z., Zhang, Q., Wondimu, E., Verma, R., Fu, M., Shuang, T., Arif, HM, Wu, L., & Wang, R. (2020). H2S-stimulated bioenergetics in chicken erythrocytes and the underlying mechanism. American journal of physiology. Regulatory, integrative and comparative physiology, 319 (1), R69–R78. https://doi.org/10.1152/ajpregu.00348.2019
Jones MP (2015). Avian hematology. The veterinary clinics of North America. Exotic animal practice, 18 (1), 51–61. https://doi.org/10.1016/j.cvex.2014.09.012
Kambr, M. D., Livoshenko, Ye. M., Livoshenko, L. P., Zadorozhnyi, I. V. (2011). Korektsiia morfolohichnykh
pokaznykiv krovi indykiv vitaminom S. [Correction of morphological parameters of the blood of turkeys with vitamin C]. Bulletin of the Sumy National Agrarian University. Series "Veterinary Medicine", 1, 6-12 (in Ukrainian)
Kambur, M. D., Zamazii, A. A., Livoshchenko, Ye. M., & Livoshchenko, L. p. (2013). Vplyv vitaminu S na
hematolohichni pokaznyky krovi indykiv. [Effect of vitamin C on hematological parameters of blood in turkeys]. Bulletin of the Sumy National Agrarian University. Series: Veterinary medicine, (9), 44-48. (in Ukrainian)
Kashap, A., Ambade, RB, Dalvi, SH, & Kapale, PM (2017). Study of serum biochemical metabolites during late laying phase of layer chicken. Indian Research Journal for Extension and Education, 5–9. http://seea.org.in/ojs/index.php/irjee/article/viewFile/1195/836
Khariv, I. I. (2011). Stan imunnoi systemy indykiv, urazhenykh eimeriozo-histomonoznoiu invaziieiu. [The
state of the immune system of turkeys affected by eimeriozo-histomonosis infestation]. Scientific Bulletin of the Lviv National University of Veterinary Medicine and Biotechnology named after Gzhitskoho, (13, № 4 (1)), 481-484. (in Ukrainian)
Khawaja T, Khan SH, Mukhta N., Ali MA, Ahmed T., Ghafa A. Comparative study of growth performance, egg production, egg characteristics and haematobiochemical parameters of Desi, Fayoumi and Rhode Island Red chicken. Journal of Applied Animal Research. 2012. 40 (4): 273–283. Retrieved September 5 2017 from http://dx.doi.org/10.1080/09712119.2012.672310
Koĭnarski, V., & Nikolov, N. (1987). Prouchvane vŭrkhu niakoi khemokoagulographski pokazateli pri puĭcheta, eksperimentalno invasirani s Eimeria adenoeides [Blood coagulation indices of turkey poults experimentally infected with Eimeria adenoeides]. Veterinarno-meditsinski nauki, 24 (9), 85–88. (in Bulgarian)
Kozma, TG, Omana, F., Ducoff, HS, & Dawson, MJ (1995). Thermotolerance in chicken red blood cells studied by 31P NMR spectroscopy. International journal of hyperthermia: the official journal of the European Society for Hyperthermic Oncology, North American Hyperthermia Group, 11 (5), 647–662. https://doi.org/10.3109/02656739509022497
Kucheruk, L. yu. (2022). Naukovi pratsi kafedry anatomii, histolohii ta patomorfolohii tvaryn imeni akad. [Scientific works of the department of anatomy, histology and pathomorphology of animals named after Acad]. V. H. Kasianenka. NUBiP Ukrainy. (in Ukrainian)
Kuksov, O. V., & Shcherban, O. I. (2023). Vplyv faktoriv zovnishnoho seredovyshcha na produktyvnist husei. [The influence of environmental factors on the productivity of geese]. Scientific Bulletin of the LNUVMB named after S.Z. Gzhytskoho, 19 (79), 140–144. (in Ukrainian)
Kulkarni, RR, Gaghan, C., Mohammed, J., Sharif, S., & Taha-Abdelaziz, K. (2023). Cellular Immune Responses in Lymphoid Tissues of Broiler Chickens Experimentally Infected with Necrotic Enteritis-Producing Clostridium perfringens Strains. Avian diseases, 67 (2), 186–196. https://doi.org/10.1637/aviandiseases-D-23-00012
Lalonde, S., Beaulac, K., Crowe, T. G., & Schwean-Lardner, K. (2021). The effects of simulated transportation
conditions on the core body and extremity temperature, blood physiology, and behavior of white-strain layer pullets. Poultry science, 100(2), 697–706. https://doi.org/10.1016/j.psj.2020.10.077
Lam KM (2003). Mycoplasma gallisepticum-induced alterations in chicken red blood cells. Avian diseases, 47 (2), 485–488. https://doi.org/10.1637/0005-2086(2003)047[0485:MGAICR]2.0.CO;2
Liddle, T. A., Stevenson, T. J., & Majumdar, G. (2022). Photoperiodic regulation of avian physiology: From external coincidence to seasonal reproduction. Journal of experimental zoology. Part A, Ecological and integrative physiology, 337(9-10), 890–901. https://doi.org/10.1002/jez.2604
Liu, C., Zhang, LF, Song, ML, Bao, HG, Zhao, CJ, & Li, N. (2009). Highly efficient dissociation of oxygen from
hemoglobin in Tibetan chicken embryos compared with lowland chicken embryos incubated in hypoxia. Poultry science, 88 (12), 2689–2694. https://doi.org/10.3382/ps.2009-00311
Livoshchenko, Ye. M. (2006). Vikova dynamika hemohlobinu ta erytrotsytiv krovi indykiv. [Age dynamics of hemoglobin and erythrocytes in the blood of turkeys]. Bulletin of the Sumy National Agrarian University. Sumy, 1-2. (in Ukrainian)
Livoshchenko, Ye. M., Livoshchenko, L. P., Lyvoshchenko, E. M., & Lyvoshchenko, L. p. (2019). Korektsiia deiakykh pokaznykiv krovi indychat tsytomedynamy na riznykh stadiiakh rostu ta rozvytku. [Correction of some blood parameters of turkeys with cytomedins at different stages of growth and development]. (in Ukrainian)
Machaca, K., & Compton, MM (1993). Analysis of thymic lymphocyte apoptosis using in vitro techniques. Developmental and comparative immunology, 17 (3), 263–276. https://doi.org/10.1016/0145-305x(93)90045-r
Makeri, HK, Ayo, JO, Aluwong, T., & Minka, NS (2017). Daily Rhythms of Blood Parameters in Broiler Chickens Reared under Tropical Climate Conditions. Journal of circadian rhythms, 15, 5. https://doi.org/10.5334/jcr.151
Maul, K., Fieblinger, D., Heppenheimer, A., Kreutz, J., Liebsch, M., Luch, A., Pirow, R., Poth, A., Strauch, P.,
Dony, E., Schulz, M., Wolf, T., & Reisinger, K. (2022). Validation of the hen's egg test for micronucleus induction (HET-MN): detailed protocol including scoring atlas, historical control data and statistical analysis. Mutagenesis, 37 (2), 76–88. https://doi.org/10.1093/mutage/geab026
Maxwell, MH, & Siller, WG (1972). The ultrastructural characteristics of the eosinophil granules in six species of domestic birds. Journal of anatomy, 112 (Pt 2), 289–303.
Mi, J., He, T., Hu, X., Wang, Z., Wang, T., Qi, X., Li, K., Gao, L., Liu, C., Zhang, Y., Wang, S., Qiu, Y., Liu, Z., Song, J., Wang, X., Gao, Y., & Cui, H. (2023). Enterococcus faecium C171: Modulating the Immune Response to Acute Lethal Viral Challenge. International journal of antimicrobial agents, 62 (5), 106969. https://doi.org/10.1016/j.ijantimicag.2023.106969
Minias P. (2020). Ecology and Evolution of Blood Oxygen-Carrying Capacity in Birds. The American naturalist, 195(5), 788–801. https://doi.org/10.1086/707720
Minias, P., Pap, P. L., Vincze, O., & Vágási, C. I. (2024). Correlated evolution of oxidative physiology and MHCbased immunosurveillance in birds. Proceedings. Biological sciences, 291(2025), 20240686. https://doi.org/10.1098/rspb.2024.0686
Morales, A., Frei, B., Leung, C., Titman, R., Whelan, S., Benowitz-Fredericks, Z. M., & Elliott, K. H.
(2020). Point-of-care blood analyzers measure the nutritional state of eighteen free-living bird species. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 240, 110594. https://doi.org/10.1016/j.cbpa.2019.110594
Mykhailenko, Ye. O. (2015). Hematolohichni ta biokhimichni pokaznyky krovi kurchat-broileriv pry vvedenni v ratsion biolohichno aktyvnoi dobavky Humilid z vodoiu. [Hematological and biochemical indicators of the blood of broiler chickens when the biologically active additive Humilid with water is introduced into their diet]. Scientific and technical bulletin of the Scientific Research Center for Biosafety and Environmental Control of Agricultural Resources of the Dnipropetrovsk State Agrarian and Economic University, (3, No. 4), 132-135. (in Ukrainian)
Nguyen Phu, D., Yamaguchi, K., Scheid, P., & Piiper, J. (1986). Kinetics of oxygen uptake and release by red blood cells of chicken and duck. The Journal of experimental biology, 125, 15–27. https://doi.org/10.1242/jeb.125.1.15
Noulsri, E., Lerdwana, S., & Pattanapanyasat, K. (2012). The use of acridine orange and glutaraldehyde-fixed chicken red blood cells for absolute counting of residual white blood cells in leuco-depleted packed red blood cells. Asian Pacific journal of allergy and immunology, 30 (2), 123–129.
O. V. Kozenko, N. V. Mahrelo, H. V. Sus (2016). Erytrotsytarna systema krovi husei u period paruvannia ta yaitsekladky. [The erythrocyte blood system of geese during mating and egg-laying]. Scientific bulletin of S.Z. Lviv National University of Veterinary Medicine and Biotechnology. Gzhitskoho, 18 (72), 14-19. (in Ukrainian)
Osadcha, Yu. V. (2021). Reaktsiia orhanizmu kurky na zminu vysoty roztashuvannia klitynnoi batarei. [The reaction of the chicken body to the change in the height of the location of the cage battery]. Scientific Progress & Innovations, (3), 150-156. (in Ukrainian)
Otchenashko, V. V. (2012). Biokhimichni kryterii vitaminnoi pozhyvnosti molodniaku perepeliv. [Biochemical criteria of vitamin nutrition of young quails]. Modern poultry farming, (3), 10-13. (in Ukrainian)
Park, YH, Jang, SH, & Kim, YH (2016). Epidemiology, virology, and clinical features of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Journal of Clinical Virology, 61 (1), 1–9. https://doi.org/10.1016/j.jcv.2016.02.001
Parmentier, HK, Kreukniet, MB, Goeree, B., Davison, TF, Jeurissen, SH, Harmsen, EG, & Nieuwland, MG (1995). Differences in distribution of lymphocyte antigens in chicken lines divergently selected for antibody responses to sheep red blood cells. Veterinary immunology and immunopathology, 48 (1-2), 155–168. https://doi.org/10.1016/0165-2427(94)05411-k
Petriv, M. D., & Ferents, L. V. (2023). Hodivnist i miasni pokaznyky sirykh husei selektsii Obroshyn, skhreshchenykh z velykoiu siroiu porodoiu. [Feeding and meat indicators of gray geese of the Obroshyn selection, crossed with a large gray breed]. Actual issues of biotechnology, ecology and nature management, 224-225. (in Ukrainian)
Promyslovykh, R. O. I. V. (2023). Vplyv biolohichno aktyvnykh rechovyn na rezystentnist orhanizmu indykiv
u promyslovykh umovakh. V Aktualni aspekty rozvytku veterynarnoi medytsyny v umovakh yevrointehratsii : materialy mizhnar. [Influence of biologically active substances on the resistance of the turkey organism in industrial conditions. In Current aspects of the development of veterinary medicine in the conditions of European integration: materials of the international]. science and practice conference, Odesa, September 14–15. 2023. Odesa, 2023. 200 p. Recommended for publication by the academic council of Odessa State Agrarian University (protocol No. 2023) (p. 155). (in Ukrainian)
Pustova, N. V., Pustova, Z. V., & Kolinchuk, R. V. (2024). Biokhimichnyi sklad krovi kurei-nesuchok produktyvnoho periodu. [Biochemical composition of the blood of laying hens during the productive period]. Podilsky Visnyk: Agriculture, Technology, Economy, (43), 14–24. https://doi.org/10.37406/2706-9052-2024-2.14 (in Ukrainian)
Reda, F. M., Alagawany, M., Salah, A. S., Mahmoud, M. A., Azzam, M. M., Di Cerbo, A., El-Saadony, M. T., & Elnesr, S. S. (2024). Biological Selenium Nanoparticles in Quail Nutrition: Biosynthesis and its Impact on Performance, Carcass, Blood Chemistry, and Cecal Microbiota. Biological trace element research, 202 (9), 4191–4202. https://doi.org/10.1007/s12011-023-03996-3
Scope, A., & Schwendenwein, I. (2020). Laboratory Evaluation of Renal Function in Birds. The veterinary clinics of North America. Exotic animal practice, 23(1), 47–58. https://doi.org/10.1016/j.cvex.2019.08.002
Sellers, JR, Pato, MD, & Adelstein, RS (1981). Reversible phosphorylation of smooth muscle myosin, heavy
meromyosin, and platelet myosin. The Journal of biological chemistry, 256 (24), 13137–13142.
Shovkoplias, I., Korenieva, Zh., Rosha, L., Ovcharenko, H., Mazovska, C., & Tiunina, D. (2023). Vplyv biolohichno aktyvnykh rechovyn na rezystentnist orhanizmu indykiv u promyslovykh umovakh. [Influence of biologically active substances on the resistance of the turkey organism in industrial conditions]. Agrarian Bulletin of the Black Sea Coast, (108). (in Ukrainian)
Shuliak, S. V. (2013). Vplyv nanorozmirnoho sribla na morfolohichni ta biokhimichni pokaznyky krovi perepeliv. [The influence of nanosized silver on the morphological and biochemical parameters of the blood of quails]. Veterinary Biotechnology, (23), 525-529. (in Ukrainian)
Simpson CF (1968). Ultrastructural features of the turkey thrombocyte and lymphocyte. Poultry science, 47 (3), 848–850. https://doi.org/10.3382/ps.0470848
Sloboda, L. Ya., Petriv, M. D., Zahorets, N. M., Khomyk, M. M., & Tesak, H. V. (2013). Vidtvorni yakosti ta pokaznyky krovi obroshynskykh bilykh husei, skhreshchenykh z porodoiu lehat. [Reproductive qualities and blood parameters of Obroshyn white geese crossed with the Legat breed]. Foothill and mountain agriculture and animal husbandry, (55 (1)), 198-202. (in Ukrainian)
Soslau G. (2020). The role of the red blood cell and platelet in the evolution of mammalian and avian endothermy. Journal of experimental zoology. Part B, Molecular and developmental evolution, 334(2), 113–127. https://doi.org/10.1002/jez.b.22922
Staines, HM, Godfrey, EM, Lapaix, F., Egee, S., Thomas, S., & Ellory, JC (2002). Two functionally distinct organic osmolyte pathways in Plasmodium gallinaceum-infected chicken red blood cells. Biochimica et biophysica acta, 1561 (1), 98–108. https://doi.org/10.1016/s0005-2736(01)00461-8
Stiller, RA, Belamarich, FA, & Shepro, D. (1975). Aggregation and release in thrombocytes of the duck. The American journal of physiology, 229 (1), 206–210. https://doi.org/10.1152/ajplegacy.1975.229.1.206
Sugimoto, K., Nishikawa, T., & Sugiyama, T. (2023). CD41+ extracellular vesicles produced by avian thrombocytes contain microRNAs. Genes to cells: devoted to molecular & cellular mechanisms, 28(12), 915–928. https://doi.org/10.1111/gtc.13078
Sylte, MJ, Sivasankaran, SK, Trachsel, J., Sato, Y., Wu, Z., Johnson, TA, Chandra, LC, Zhang, Q., & Looft, T.
(2021). The Acute Host-Response of Turkeys Colonized with Campylobacter coli. Frontiers in veterinary science, 8, 613203. https://doi.org/10.3389/fvets.2021.613203
Taylor, RL, Jr, Medarova, Z., & Briles, WE (2016). Immune effects of chicken non-MHC alloantigens. Poultry science, 95 (2), 447–457. https://doi.org/10.3382/ps/pev331
Traill, KN, Böck, G., Boyd, R., & Wick, G. (1983). Chicken thrombocytes. Isolation, serological and functional
characterization using the fluorescence activated cell sorter. Developmental and comparative immunology, 7 (1), 111–125. https://doi.org/10.1016/0145-305x(83)90060-5
Tyshkivska, A. M., Dukhnytskyi, V. B., & Tyshkivskyi, M. ya. (2020). Vplyv polodoksynu i tylmoksa 25% na
morfo-biokhimichni pokaznyky krovi kurchat-broileriv. [Effect of polodoxine and tilmox 25% on morphological and biochemical parameters of blood of broiler chickens]. Scientific Bulletin of Veterinary Medicine, 2020 (1), 72-80. https://doi.org/10.33245/2310-4902-2020-154-1-72-79 (in Ukrainian)
van't Hof, RJ, Tuinenburg-Bol Raap, AC, & Nijweide, PJ (1995). Induction of osteoclast characteristics in cultured avian blood monocytes; modulation by osteoblasts and 1,25-(OH)2 vitamin D3. International journal of experimental pathology, 76 (3), 205–214.
Virtanen, I., Kurkinen, M., & Lehto, VP (1979). Nucleus-anchoring cytoskeleton in chicken red blood cells. Cell biology international reports, 3 (2), 157–162. https://doi.org/10.1016/0309-1651(79)90121-8
Wachowicz B. (1982). Binding of adenosine diphosphate to turkey thrombocytes. Haemostasis, 11 (3), 139–148. https://doi.org/10.1159/000214654
Wachowicz B. (1984). Adenine nucleotides in thrombocytes of birds. Cell biochemistry and function, 2 (3), 167–170. https://doi.org/10.1002/cbf.290020310
Walter, H., Raymond, FD, & Fisher, D. (1992). Erythrocyte partitioning in dextran-poly (ethylene glycol) aqueous phase systems. Events in phase and cell separation. Journal of chromatography, 609 (1-2), 219–227. https://doi.org/10.1016/0021-9673(92)80166-r
Weill, JC, & Reynaud, CA (1987). The chicken B cell compartment. Science (New York, NY), 238 (4830), 1094–1098. https://doi.org/10.1126/science.3317827
Yalçin, S., Özkan, S., Türkmut, L., & Siegel, PB (2017). Responses to selection for body weight and feed consumption in chickens: Growth, feed efficiency, and carcass characteristics. Poultry Science, 96 (1), 226–233. https://doi.org/10.3382/ps/pew286
Ye, WV, McFarland, DC, Gilkerson, KK, & Pesall, JE (1996). The role of platelet-derived growth factor in turkey skeletal muscle development. Cytobios, 88(352), 53–62.
Yemelianenko, A. A. (2016). Dynamika morfolohichnoho skladu ta vmistu hemohlobinu v krovi molodykh perepeliv pid vplyvom akvakhelatnoho rozchynu selenu pry inkubatsii yaiets. [Dynamics of the morphological composition and hemoglobin content in the blood of young quail under the influence of an aquachelate solution of selenium during incubation of eggs]. Scientific and technical bulletin of the Scientific Research Center for Biosafety and Ecological Control of Agricultural Resources, (4, No. 2), 40-44. (in Ukrainian)
Yin, J., Zhao, S., Wu, X., Wang, C., & Wu, Y. (2013). Nan fang yi ke da xue xue bao = Journal of Southern Medical University, 33 (1), 57–60.
Youssef, IM, Khalil, HA, Shakoori, AM, Bagadood, RM, Alyahyawi, AY, Alhazzaa, RA, Fakiha, KG, Nasr, S., Abo-Samra, MA, Hassan, MS, Halim, HSAE, El-Hack , MEA, Jaremko, M., Al-Nemi, R., & Youssef, KM (2023). Immune response, hematological traits, biochemical blood parameters, and histological status of laying hens influenced by dietary chitosan-oligosaccharides. Poultry science, 102 (9), 102834. https://doi.org/10.1016/j.psj.2023.102834
Zamazii, A. A., & Petrenko, V. M. (2016). Biokhimichnyi profil krovi ta histolohichni zminy v pechintsi indykiv pid vplyvom hepatoprotektora «HEPAFORTE». [Biochemical profile of blood and histological changes in the liver of turkeys under the influence of hepatoprotector "HEPAFORTE"]. Scientific and technical bulletin of DNDKIVP and KD and Institute of Animal Biology, 17 (2), 19-24. (in Ukrainian)
Zamazii, A. A., Kambur, M. D., & Petrenko, V. M. (2017). Pokaznyky nespetsyfichnoi rezystentnosti orhanizmu
indykiv pid vplyvom abiotychnykh faktoriv. [Indicators of non-specific resistance of the body of turkeys under the influence of abiotic factors]. Bulletin of the Sumy National Agrarian University. Series "Veterinary Medicine", 1 (40), 38-42. (in Ukrainian)
Zaplatynskyi, V. S., & Fedorovych, V. S. (2021). Pokaznyky krovi ta yikh zalezhnist vid masy ta liniinoho rostu husei Obroshynskoi siroi ta Obroshynskoi biloi poridnykh hrup. [Blood parameters and their relationship with weight and linear growth of geese of Obroshinsky gray and Obroshinsky white breed groups]. Scientific Bulletin of the LNU of Veterinary Medicine and Biotechnology, 46 (1), 279-284. (in Ukrainian)
Zhang, X., Wei, S., Shao, J., Zhang, S., Gao, M., Zhang, W., Ma, B., & Wang, J. (2015). Molecular cloning and
characterization of CD3ε in Chinese domestic goose (Anser cygnoides). Gene, 564 (2), 160–167. https://doi.org/10.1016/j.gene.2015.03.034
Zuckerman FA (1999). Extrathymic CD4/CD8 double positive T cells. Veterinary immunology and immunopathology, 72 (1-2), 55–66. https://doi.org/10.1016/s0165-2427(99)00118-x.