SPREAD OF AVIAN TUBERCULOSIS (REVIEW)
Abstract
This review paper considers the topical issue of tuberculosis in poultry. This disease was considered eradicated in Ukraine. On the other hand, isolated cases of poultry disease still occur. This can be explained by the military operations in Ukraine and the fact that Mycobacterium avium constantly circulates among wild birds. The relevance of this issue is also confirmed by the fact that this disease affects not only birds but is also contagious to humans. In 2022, suspicion of tuberculosis in birds was detected mainly in the poultry sector and among small enterprises. The cause of cases of tuberculosis in birds was non-compliance with sanitary standards, insufficient or absent disinfection of premises. The use of open feeders and waterers contributed to the contact of domestic poultry with wild birds that are carriers of Mycobacterium avium. Lack of vaccination of birds for various reasons. When a bird becomes ill with tuberculosis, its egg production decreases by 30–50%, meat productivity decreases, and feed costs increase. At autopsy of the bird, pathological changes are observed in the lungs, spleen, lymph nodes. Morphological and biological features of the pathogen are that Mycobacterium avium is an acid-fast, immobile, gram-positive rod measuring 0.2–0.5 × 1.0–4.0 μm. Its cell wall contains a high concentration of lipids, which provide resistance to disinfectants and environmental influences. The pathogen is an obligate aerobe that actively multiplies at a temperature of 37–42°C. The optimal pH of the medium for growth is 6.0–7.0. The bacterium is able to maintain viability in soil, water, litter and on surfaces for 2 years. The bacterium is insensitive to most standard disinfectants. Pathogenicity factors include resistance to phagocytosis, due to which the bacterium is retained in macrophages, causing chronic inflammation. The main routes of infection in private farms are the fecal-oral route, which occurs through the release of the pathogen through the feces of sick birds. Poor hygiene conditions contribute to the contamination of water, feed and litter. The problems of timely diagnosis in private farms are the lack of access to modern methods, the lack of equipment for molecular genetic diagnostics. The most sensitive diagnostic methods are PCR, histological analysis and microbiological studies. Preventive measures include disinfection, isolation of sick birds, control of housing conditions and vaccination.
References
2. Agrawal, G., Borody, T. J., & Chamberlin, W. (2014). 'Global warming' to Mycobacterium avium subspecies paratuberculosis. Future microbiology, 9 (7), 829 – 832. https://doi.org/10.2217/fmb.14.52.
3. Akapelwa, M. L., Kapalamula, T. F., Ouchi-Aizu, Y., Hang'ombe, B. M., Nishiuchi, Y., Gordon, S. V., Solo, E. S., Tamaru, A., Nishimura, T., Hasegawa, N., Morimoto, K., Fukushima, Y., Suzuki, Y., & Nakajima, C. (2021). Evaluation of IS1245 LAMP in Mycobacterium avium and the influence of host-related genetic diversity on its application. Diagnostic microbiology and infectious disease, 101 (4), 115494. https://doi.org/10.1016/j.diagmicrobio.2021.115494
4. Algammal, A. M., Hashem, H. R., Al-Otaibi, A. S., Alfifi, K. J., El-Dawody, E. M., Mahrous, E., Hetta, H. F., El-Kholy, A. W., Ramadan, H., & El-Tarabili, R. M. (2021). Emerging MDR-Mycobacterium avium subsp. avium in housereared domestic birds as the first report in Egypt. BMC microbiology, 21(1), 237. https://doi.org/10.1186/s12866-021-02287-y.
5. Appelberg R. (2006). Pathogenesis of Mycobacterium avium infection: typical responses to an atypical mycobacterium?. Immunologic research, 35(3), 179–190. https://doi.org/10.1385/IR:35:3:179.
6. Arikawa, K., Ichijo, T., Nakajima, S., Nishiuchi, Y., Yano, H., Tamaru, A., Yoshida, S., Maruyama, F., Ota, A., Nasu, M., Starkova, D. A., Mokrousov, I., Narvskaya, O. V., & Iwamoto, T. (2019). Genetic relatedness of Mycobacterium avium subsp. hominissuis isolates from bathrooms of healthy volunteers, rivers, and soils in Japan with human clinical isolates from different geographical areas. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 74, 103923. https://doi.org/10.1016/j.meegid.2019.103923.
7. Bannantine, J. P., & Stabel, J. R. (2002). Killing of Mycobacterium avium subspecies paratuberculosis within macrophages. BMC microbiology, 2, 2. https://doi.org/10.1186/1471-2180-2-2.
8. Bannantine, J. P., & Talaat, A. M. (2010). Genomic and transcriptomic studies in Mycobacterium avium subspecies paratuberculosis. Veterinary immunology and immunopathology, 138(4), 303–311. https://doi.org/10.1016/j.vetimm.2010.10.008.
9. Bannantine, J. P., Baechler, E., Zhang, Q., Li, L., & Kapur, V. (2002). Genome scale comparison of Mycobacterium avium subsp. paratuberculosis with Mycobacterium avium subsp. avium reveals potential diagnostic sequences. Journal of clinical microbiology, 40 (4), 1303–1310. https://doi.org/10.1128/JCM.40.4.1303-1310.2002.
10. Bannantine, J. P., Zhang, Q., Li, L. L., & Kapur, V. (2003). Genomic homogeneity between Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis belies their divergent growth rates. BMC microbiology, 3, 10. https://doi.org/10.1186/1471-2180-3-10.
11. Barratt-Boyes S. M. (2012). Comparative immunology, microbiology and infectious diseases. Introduction. Comparative immunology, microbiology and infectious diseases, 35 (3), 217–218. https://doi.org/10.1016/j.cimid.2012.01.008.
12. Bax, H. I., Bakker-Woudenberg, I. A., Ten Kate, M. T., Verbon, A., & de Steenwinkel, J. E. (2016). Tigecycline Potentiates Clarithromycin Activity against Mycobacterium avium In Vitro. Antimicrobial agents and chemotherapy, 60 (4), 2577–2579. https://doi.org/10.1128/AAC.02864-15.
13. Bermudez L. E. (1994). Effect of ethanol on the interaction between the macrophage and Mycobacterium avium. Alcohol (Fayetteville, N.Y.), 11(2), 69–73. https://doi.org/10.1016/0741-8329(94)90046-9.
14. Berry, D., Horn, M., Xi, C., & Raskin, L. (2010). Mycobacterium avium infections of Acanthamoeba strains: host strain variability, grazing-acquired infections, and altered dynamics of inactivation with monochloramine. Applied and environmental microbiology, 76 (19), 6685–6688. https://doi.org/10.1128/AEM.00644-10.
15. Blanchard, J. D., Elias, V., Cipolla, D., Gonda, I., & Bermudez, L. E. (2018). Effective Treatment of Mycobacterium avium subsp. hominissuis and Mycobacterium abscessus Species Infections in Macrophages, Biofilm, and Mice by Using Liposomal Ciprofloxacin. Antimicrobial agents and chemotherapy, 62 (10), e00440-18. https://doi.org/10.1128/AAC.00440-18.
16. Cannalire, R., Machado, D., Felicetti, T., Santos Costa, S., Massari, S., Manfroni, G., Barreca, M. L., Tabarrini, O., Couto, I., Viveiros, M., Sabatini, S., & Cecchetti, V. (2017). Natural isoflavone biochanin A as a template for the design of new and potent 3-phenylquinolone efflux inhibitors against Mycobacterium avium. European journal of medicinal chemistry, 140, 321–330. https://doi.org/10.1016/j.ejmech.2017.09.014.
17. Carazo-Fernández, L., González-Cortés, C., López-Medrano, R., Diez-Tascón, C., Marcos-Benavides, M. F., & Rivero-Lezcano, O. M. (2022). Mycobacterium avium complex infected cells promote growth of the pathogen Pseudomonas aeruginosa. Microbial pathogenesis, 166, 105549. https://doi.org/10.1016/j.micpath.2022.105549.
18. Corner, L. A., & Gormley, E. (2012). Mycobacterial infections in multiple species: implications for diagnosis and control. Veterinary journal (London, England : 1997), 191(2), 141–142. https://doi.org/10.1016/j.tvjl.2011.08.021.
19. Crilly, N. P., Ayeh, S. K., & Karakousis, P. C. (2021). The New Frontier of Host-Directed Therapies for Mycobacterium avium Complex. Frontiers in immunology, 11, 623119. https://doi.org/10.3389/fimmu.2020.623119
20. Cromie, R. L., Ash, N. J., Brown, M. J., & Stanford, J. L. (2000). Avian immune responses to Mycobacterium avium: the wildfowl example. Developmental and comparative immunology, 24(2-3), 169–185. https://doi.org/10.1016/s0145-305x(99)00071-3
21. Danelishvili, L., Poort, M. J., & Bermudez, L. E. (2004). Identification of Mycobacterium avium genes up-regulated in cultured macrophages and in mice. FEMS microbiology letters, 239(1), 41–49. https://doi.org/10.1016/j.femsle. 2004.08.014
22. Danelishvili, L., Stang, B., & Bermudez, L. E. (2014). Identification of Mycobacterium avium genes expressed during in vivo infection and the role of the oligopeptide transporter OppA in virulence. Microbial pathogenesis, 76, 67–76. https://doi.org/10.1016/j.micpath.2014.09.010.
23. Danelishvili, L., Wu, M., Stang, B., Harriff, M., Cirillo, S. L., Cirillo, J. D., Bildfell, R., Arbogast, B., & Bermudez, L. E. (2007). Identification of Mycobacterium avium pathogenicity island important for macrophage and amoeba infection. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11038–11043. https://doi.org/10.1073/pnas.0610746104.
24. Dirac, M. A., Weigel, K. M., Yakrus, M. A., Becker, A. L., Chen, H. L., Fridley, G., Sikora, A., Speake, C., Hilborn, E. D., Pfaller, S., & Cangelosi, G. A. (2013). Shared Mycobacterium avium genotypes observed among unlinked clinical and environmental isolates. Applied and environmental microbiology, 79 (18), 5601–5607. https://doi.org/10.1128/AEM.01443-13.
25. Doucet-Populaire, F., Capobianco, J. O., Zakula, D., Jarlier, V., & Goldman, R. C. (1998). Molecular basis of clarithromycin activity against Mycobacterium avium and Mycobacterium smegmatis. The Journal of antimicrobial chemotherapy, 41(2), 179–187. https://doi.org/10.1093/jac/41.2.179.
26. el-Zaatari, F. A., Naser, S. A., Markesich, D. C., Kalter, D. C., Engstand, L., & Graham, D. Y. (1996). Identification of Mycobacterium avium complex in sarcoidosis. Journal of clinical microbiology, 34(9), 2240–2245. https://doi.org/10.1128/jcm.34.9.2240-2245.1996
27. Erf, G. F., & Ramachandran, I. R. (2016). The growing feather as a dermal test site: Comparison of leukocyte profiles during the response to Mycobacterium butyricum in growing feathers, wattles, and wing webs. Poultry science, 95(9), 2011–2022. https://doi.org/10.3382/ps/pew122
28. Falkinham J. O., 3rd (2003). Factors influencing the chlorine susceptibility of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum. Applied and environmental microbiology, 69(9), 5685–5689. https://doi.org/10.1128/AEM.69.9.5685-5689.2003
29. Ferro, B. E., Meletiadis, J., Wattenberg, M., de Jong, A., van Soolingen, D., Mouton, J. W., & van Ingen, J. (2015). Clofazimine Prevents the Regrowth of Mycobacterium abscessus and Mycobacterium avium Type Strains Exposed to Amikacin and Clarithromycin. Antimicrobial agents and chemotherapy, 60(2), 1097–1105. https://doi.org/10.1128/AAC.02615-15
30. Flaherty, D. K., Vesosky, B., Beamer, G. L., Stromberg, P., & Turner, J. (2006). Exposure to Mycobacterium avium can modulate established immunity against Mycobacterium tuberculosis infection generated by Mycobacterium bovis BCG vaccination. Journal of leukocyte biology, 80 (6), 1262–1271. https://doi.org/10.1189/jlb.0606407.
31. Fröberg, G., Maurer, F. P., Chryssanthou, E., Fernström, L., Benmansour, H., Boarbi, S., Mengshoel, A. T., Keller, P. M., Viveiros, M., Machado, D., Fitzgibbon, M. M., Mok, S., Werngren, J., Cirillo, D. M., Alcaide, F., Hyyryläinen, H. L., Aubry, A., Andres, S., Nadarajan, D., Svensson, E., EUCAST AMST and ESCMYC study groups (2023). Towards clinical breakpoints for non-tuberculous mycobacteria – Determination of epidemiological cut off values for the Mycobacterium avium complex and Mycobacterium abscessus using broth microdilution. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 29(6), 758–764. https://doi.org/10.1016/j.cmi.2023.02.007.
32. Fukano, H., Yoshida, M., Kazumi, Y., Fujiwara, N., Katayama, K., Ogura, Y., Hayashi, T., Miyamoto, Y., Fujimoto, N., Hongsheng, W., Mizumoto, C., Koizumi, Y., Maeda, H., Hiranuma, O., Mitarai, S., Ishii, N., & Hoshino, Y. (2018). Mycobacterium shigaense sp. nov., a slow-growing, scotochromogenic species, is a member of the Mycobacterium simiae complex. International journal of systematic and evolutionary microbiology, 68(8), 2437–2442. https://doi.org/10.1099/ijsem.0.002845.
33. Gomes, M. S., Dom, G., Pedrosa, J., Boelaert, J. R., & Appelberg, R. (1999). Effects of iron deprivation on Mycobacterium avium growth. Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease, 79(5), 321–328. https://doi.org/10.1054/tuld.1999.0216.
34. Gonzalo-Asensio, J., Aguilo, N., Marinova, D., & Martin, C. (2017). Breaking Transmission with Vaccines: The Case of Tuberculosis. Microbiology spectrum, 5 (4), 10.1128/microbiolspec.MTBP-0001-2016. https://doi.org/10.1128/microbiolspec.MTBP-0001-2016.
35. Gordon, S. V., & Parish, T. (2018). Microbe Profile: Mycobacterium tuberculosis: Humanity's deadly microbial foe. Microbiology (Reading, England), 164(4), 437–439. https://doi.org/10.1099/mic.0.000601.
36. Graham, L., Jr, Warren, N. G., Tsang, A. Y., & Dalton, H. P. (1988). Mycobacterium avium complex pseudobacteriuria from a hospital water supply. Journal of clinical microbiology, 26(5), 1034–1036. https://doi.org/10.1128/jcm.26.5.1034-1036.1988.
37. Grange, J. M., Yates, M. D., & Boughton, E. (1990). The avian tubercle bacillus and its relatives. The Journal of applied bacteriology, 68(5), 411–431. https://doi.org/10.1111/j.1365-2672.1990.tb02892.x.
38. Gray, P. L., Saggese, M. D., Phalen, D. N., & Tizard, I. (2008). Humoral response to Mycobacterium avium subsp. avium in naturally infected ring-neck doves (Streptopelia risoria). Veterinary immunology and immunopathology, 125(3-4), 216–224. https://doi.org/10.1016/j.vetimm.2008.05.032
39. Griffith D. E. (2018). Treatment of Mycobacterium avium Complex (MAC). Seminars in respiratory and critical care medicine, 39(3), 351–361. https://doi.org/10.1055/s-0038-1660472
40. Hall, T. J., McHugo, G. P., Mullen, M. P., Ward, J. A., Killick, K. E., Browne, J. A., Gordon, S. V., & MacHugh, D. E. (2024). Integrative and comparative genomic analyses of mammalian macrophage responses to intracellular mycobacterial pathogens. Tuberculosis (Edinburgh, Scotland), 147, 102453. https://doi.org/10.1016/j.tube.2023.102453.
41. Hamilton, L. A., & Falkinham, J. O. (2018). Aerosolization of Mycobacterium avium and Mycobacterium abscessus from a household ultrasonic humidifier. Journal of medical microbiology, 67 (10), 1491–1495. https://doi.org/10.1099/jmm.0.000822.
42. Hermon-Taylor, J., Bull, T. J., Sheridan, J. M., Cheng, J., Stellakis, M. L., & Sumar, N. (2000). Causation of Crohn's disease by Mycobacterium avium subspecies paratuberculosis. Canadian journal of gastroenterology = Journal canadien de gastroenterologie, 14 (6), 521–539. https://doi.org/10.1155/2000/798305.
43. Hilda, J. N., Das, S., Tripathy, S. P., & Hanna, L. E. (2020). Role of neutrophils in tuberculosis: A bird's eye view. Innate immunity, 26 (4), 240–247. https://doi.org/10.1177/1753425919881176.
44. Horsburgh, C. R., Jr, Cohn, D. L., Roberts, R. B., Masur, H., Miller, R. A., Tsang, A. Y., & Iseman, M. D. (1986). Mycobacterium avium-M. intracellulare isolates from patients with or without acquired immunodeficiency syndrome. Antimicrobial agents and chemotherapy, 30(6), 955–957. https://doi.org/10.1128/AAC.30.6.955.
45. Ignatov, D., Kondratieva, E., Azhikina, T., & Apt, A. (2012). Mycobacterium avium-triggered diseases: pathogenomics. Cellular microbiology, 14(6), 808–818. https://doi.org/10.1111/j.1462-5822.2012.01776.x.
46. Inderlied, C. B., Kemper, C. A., & Bermudez, L. E. (1993). The Mycobacterium avium complex. Clinical microbiology reviews, 6(3), 266–310. https://doi.org/10.1128/CMR.6.3.266.
47. Inglis, N., & McFadden, J. (1999). Strain typing of the Mycobacterium avium complex. The Journal of infection, 38 (3), 151–156. https://doi.org/10.1016/s0163-4453(99)90242-6.
48. Jones, A., Lee, O. Y., Minnikin, D. E., Baird, M. S., & Al Dulayymi, J. R. (2020). A re-investigation of the mycolic acids of Mycobacterium avium. Chemistry and physics of lipids, 230, 104928. https://doi.org/10.1016/j.chemphyslip.2020.104928.
49. Kaczmarkowska, A., Didkowska, A., Kwiecień, E., Stefańska, I., Rzewuska, M., & Anusz, K. (2022). The Mycobacterium avium complex – an underestimated threat to humans and animals. Annals of agricultural and environmental medicine : AAEM, 29(1), 22–27. https://doi.org/10.26444/aaem/136398.
50. Kanabalan, R. D., Lee, L. J., Lee, T. Y., Chong, P. P., Hassan, L., Ismail, R., & Chin, V. K. (2021). Human tuberculosis and Mycobacterium tuberculosis complex: A review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery. Microbiological research, 246, 126674. https://doi.org/10.1016/j.micres.2020.126674.
51. Kiran, D., Podell, B. K., Chambers, M., & Basaraba, R. J. (2016). Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. Seminars in immunopathology, 38(2), 167–183. https://doi.org/10.1007/s00281-015-0537-x.
52. Kirubakar, G., Schäfer, H., Rickerts, V., Schwarz, C., & Lewin, A. (2020). Mutation on lysX from Mycobacterium avium hominissuis impacts the host-pathogen interaction and virulence phenotype. Virulence, 11 (1), 132–144. https://doi.org/10.1080/21505594.2020.1713690.
53. Klanicova, B., Slana, I., Vondruskova, H., Kaevska, M., & Pavlik, I. (2011). Real-time quantitative PCR detection of Mycobacterium avium subspecies in meat products. Journal of food protection, 74(4), 636–640. https://doi.org/10.4315/0362-028X.JFP-10-332.
54. Klanicova-Zalewska, B., & Slana, I. (2014). Presence and persistence of Mycobacterium avium and other nontuberculous mycobacteria in animal tissues and derived foods: a review. Meat science, 98 (4), 835–841. https://doi.org/10.1016/j.meatsci.2014.08.001.
55. Kolb, J., Hillemann, D., Möbius, P., Reetz, J., Lahiri, A., Lewin, A., Rüsch-Gerdes, S., & Richter, E. (2014). Genetic characterization of German Mycobacterium avium strains isolated from different hosts and specimens by multilocus sequence typing. International journal of medical microbiology: IJMM, 304(8), 941–948. https://doi.org/10.1016/j.ijmm.2014.06.001.
56. Kravitz, A., Pelzer, K., & Sriranganathan, N. (2021). The Paratuberculosis Paradigm Examined: A Review of Host Genetic Resistance and Innate Immune Fitness in Mycobacterium avium subsp. Paratuberculosis Infection. Frontiers in veterinary science, 8, 721706. https://doi.org/10.3389/fvets.2021.721706.
57. Kriz, P., Kaevska, M., Bartejsova, I., & Pavlik, I. (2013). Mycobacterium avium subsp. avium found in raptors exposed to infected domestic fowl. Avian diseases, 57(3), 688–692. https://doi.org/10.1637/10446-110612-Case.1.
58. Lande, L., George, J., & Plush, T. (2018). Mycobacterium avium complex pulmonary disease: new epidemiology and management concepts. Current opinion in infectious diseases, 31(2), 199–207.https://doi.org/10.1097/QCO.0000000000000437.
59. Leite F. L. (2015). Understanding Mycobacterium avium subspecies hominissuis microaggregate mediated pathogenesis. Virulence, 6 (7), 675–676. https://doi.org/10.1080/21505594.2015.1088633.
60. Lin, C. S., Su, C. C., Hsieh, S. C., Lu, C. C., Wu, T. L., Jia, J. H., Wu, T. S., Han, C. C., Tsai, W. C., Lu, J. J., & Lai, H. C. (2015). Rapid identification of Mycobacterium avium clinical isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of microbiology, immunology, and infection Wei mian yu gan ran za zhi, 48 (2), 205–212. https://doi.org/10.1016/j.jmii.2013.08.008.
61. Manning E. J. (2001). Mycobacterium avium subspecies paratuberculosis: a review of current knowledge. Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians, 32(3), 293–304. https://doi.org/10.1638/1042-7260(2001)032[0293:MASPAR]2.0.CO;2.
62. Matern, W. M., Bader, J. S., & Karakousis, P. C. (2018). Genome analysis of Mycobacterium avium subspecies hominissuis strain 109. Scientific data, 5, 180277. https://doi.org/10.1038/sdata.2018.277.
63. Mattoo R. (2021). Targeting emerging Mycobacterium avium infections: perspectives into pathways and antimicrobials for future interventions. Future microbiology, 16, 753–764. https://doi.org/10.2217/fmb-2021-0016.
64. Maurer, F. P., Pohle, P., Kernbach, M., Sievert, D., Hillemann, D., Rupp, J., Hombach, M., & Kranzer, K. (2019). Differential drug susceptibility patterns of Mycobacterium chimaera and other members of the Mycobacterium avium-intracellulare complex. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 25(3), 379.e1–379.e7. https://doi.org/10.1016/j.cmi.2018.06.010.
65. McNabe, M., Tennant, R., Danelishvili, L., Young, L., & Bermudez, L. E. (2011). Mycobacterium avium ssp. hominissuis biofilm is composed of distinct phenotypes and influenced by the presence of antimicrobials. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 17 (5), 697–703. https://doi.org/10.1111/j.1469-0691.2010.03307.x.
66. Meissner, G., & Anz, W. (1977). Sources of Mycobacterium avium complex infection resulting in human diseases. The American review of respiratory disease, 116 (6), 1057–1064. https://doi.org/10.1164/arrd.1977.116.6.1057.
67. Miltner, E. C., & Bermudez, L. E. (2000). Mycobacterium avium grown in Acanthamoeba castellanii is protected from the effects of antimicrobials. Antimicrobial agents and chemotherapy, 44 (7), 1990–1994. https://doi.org/10.1128/AAC.44.7.1990-1994.2000.
68. Miltner, E., Daroogheh, K., Mehta, P. K., Cirillo, S. L., Cirillo, J. D., & Bermudez, L. E. (2005). Identification of Mycobacterium avium genes that affect invasion of the intestinal epithelium. Infection and immunity, 73 (7), 4214–4221. https://doi.org/10.1128/IAI.73.7.4214-4221.2005.
69. Motamedi, N., Danelishvili, L., & Bermudez, L. E. (2014). Identification of Mycobacterium avium genes associated with resistance to host antimicrobial peptides. Journal of medical microbiology, 63 (Pt 7), 923–930. https://doi.org/10.1099/jmm.0.072744-0.
70. Mycobacterium Avium Paratuberculosis: Infrequent Human Pathogen or Public Health Threat? This report is based on a colloquium, sponsored by the American Academy of Microbiology, convened June 15-17, 2007, in Salem, Massachusetts. Washington (DC): American Society for Microbiology; 2008. PMID: 33119237.
71. Nazarova, E. V., & Russell, D. G. (2019). Mycobacterium tuberculosis: Bacterial Fitness within the Host Macrophage. Microbiology spectrum, 7 (2), 10.1128/microbiolspec.bai-0001-2019. https://doi.org/10.1128/microbiolspec.BAI-0001-2019.
72. Nishimura, T., Shimoda, M., Tamizu, E., Uno, S., Uwamino, Y., Kashimura, S., Yano, I., & Hasegawa, N. (2020). The rough colony morphotype of Mycobacterium avium exhibits high virulence in human macrophages and mice Journal of medical microbiology, 69 (7), 1020–1033. https://doi.org/10.1099/jmm.0.001224.
73. Oggioni, M. R., Fattorini, L., Li, B., De Milito, A., Zazzi, M., Pozzi, G., Orefici, G., & Valensin, P. E. (1995). Identification of Mycobacterium tuberculosis complex, Mycobacterium avium and Mycobacterium intracellulare by selective nested polymerase chain reaction. Molecular and cellular probes, 9(5), 321–326. https://doi.org/10.1016/s0890-8508(95) 91604-0.
74. Orme I. M. (1993). Immunity to mycobacteria. Current opinion in immunology, 5(4), 497–502. https://doi.org/10.1016/0952-7915(93)90029-r.
75. Palacios, A., Sampedro, L., Sevilla, I. A., Molina, E., Gil, D., Azkargorta, M., Elortza, F., Garrido, J. M., Anguita, J., & Prados-Rosales, R. (2019). Mycobacterium tuberculosis extracellular vesicle-associated lipoprotein LpqH as a potential biomarker to distinguish paratuberculosis infection or vaccination from tuberculosis infection. BMC veterinary research, 15 (1), 188. https://doi.org/10.1186/s12917-019-1941-6.
76. Pidot, S. J., Asiedu, K., Käser, M., Fyfe, J. A., & Stinear, T. P. (2010). Mycobacterium ulcerans and other mycolactoneproducing mycobacteria should be considered a single species. PLoS neglected tropical diseases, 4 (7), e663. https://doi.org/10.1371/journal.pntd.0000663.
77. Rindi, L., & Garzelli, C. (2014). Genetic diversity and phylogeny of Mycobacterium avium. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 21, 375–383. https://doi.org/10.1016/j.meegid.2013.12.007.
78. Rónai, Z., Csivincsik, Á., & Dán, Á. (2015). Molecular identification of Mycobacterium avium subsp. silvaticum by duplex high-resolution melt analysis and subspecies-specific real-time PCR. Journal of clinical microbiology, 53 (5), 1582–1587. https://doi.org/10.1128/JCM.03556-14.
79. Rónai, Z., Csivincsik, Á., Dán, Á., & Gyuranecz, M. (2016). Molecular analysis and MIRU-VNTR typing of Mycobacterium avium subsp. avium, 'hominissuis' and silvaticum strains of veterinary origin. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 40, 192–199. https://doi.org/10.1016/j.meegid.2016.03.004.
80. Rossi, L., Brandi, G., Malatesta, M., Serafini, S., Pierigé, F., Celeste, A. G., Schiavano, G. F., Gazzanelli, G., & Magnani, M. (2004). Effect of listeriolysin O-loaded erythrocytes on Mycobacterium avium replication within macrophages. The Journal of antimicrobial chemotherapy, 53 (5), 863–866. https://doi.org/10.1093/jac/dkh164.
81. Sakamoto K. (2012). The pathology of Mycobacterium tuberculosis infection. Veterinary pathology, 49 (3), 423–439. https://doi.org/10.1177/0300985811429313.
82. Salamatian, I., Ghaniei, A., Mosavari, N., Nourani, H., Keshavarz, R., & Eslampanah, M. (2020). Outbreak of avian mycobacteriosis in a commercial turkey breeder flock. Avian pathology: journal of the W.V.P.A, 49 (3), 296–304. https://doi.org/10.1080/03079457.2020.1740167.
83. Sangari, F. J., Parker, A., & Bermudez, L. E. (1999). Mycobacterium avium interaction with macrophages and intestinal epithelial cells. Frontiers in bioscience: a journal and virtual library, 4, D582–D588. https://doi.org/10.2741/sangari.
84. Schrenzel, M., Nicolas, M., Witte, C., Papendick, R., Tucker, T., Keener, L., Sutherland-Smith, M., Lamberski, N., Orndorff, D., Heckard, D., Witman, P., Mace, M., Rimlinger, D., Reed, S., & Rideout, B. (2008). Molecular epidemiology of Mycobacterium avium subsp. avium and Mycobacterium intracellulare in captive birds. Veterinary microbiology, 126 (1-3), 122–131. https://doi.org/10.1016/j.vetmic.2007.06.016.
85. Semret, M., Zhai, G., Mostowy, S., Cleto, C., Alexander, D., Cangelosi, G., Cousins, D., Collins, D. M., van Soolingen, D., & Behr, M. A. (2004). Extensive genomic polymorphism within Mycobacterium avium. Journal of bacteriology, 186 (18), 6332–6334. https://doi.org/10.1128/JB.186.18.6332-6334.2004.
86. Shin, M. K., & Shin, S. J. (2021). Genetic Involvement of Mycobacterium avium Complex in the Regulation and Manipulation of Innate Immune Functions of Host Cells. International journal of molecular sciences, 22(6), 3011. https://doi.org/10.3390/ijms22063011.
87. Shitaye, J. E., Matlova, L., Horvathova, A., Moravkova, M., Dvorska-Bartosova, L., Treml, F., Lamka, J., & Pavlik, I. (2008). Mycobacterium avium subsp. avium distribution studied in a naturally infected hen flock and in the environment by culture, serotyping and IS901 RFLP methods. Veterinary microbiology, 127(1-2), 155–164. https://doi.org/10.1016/j.vetmic.2007.07.026.
88. Shoulah, S. A., Oschmann, A. M., Selim, A., Semmler, T., Schwarz, C., Kamal, E., Hamouda, F., Galila, E., Bitter, W., & Lewin, A. (2018). Environmental Mycobacterium avium subsp. hominissuis have a higher probability to act as a recipient in conjugation than clinical strains. Plasmid, 95, 28–35. https://doi.org/10.1016/j.plasmid.2018.01.003.
89. Sion, C., Degraux, J., & Delmée, M. (1999). Early identification of Mycobacterium tuberculosis and Mycobacterium avium using the polymerase chain reaction on samples positive by a rapid commercial culture system. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology, 18 (5), 346–351. https://doi.org/10.1007/pl00015017
90. Soetaert, K., Vluggen, C., Duytschaever, L., Denoël, J., Roupie, V., Smeets, F., Bruffaerts, N., Huygen, K., Fretin, D., Diels, M., Rigouts, L., Saegerman, C., & Mathys, V. (2017). Trend analysis suggested a change in subspecies among Mycobacterium avium isolated from pigs in Belgium, 1967-2013. The Veterinary record, 180(18), 449. https://doi.org/10.1136/vr.103951.
91. Sohal, J. S., Singh, S. V., Singh, A. V., & Singh, P. K. (2010). Strain diversity within Mycobacterium avium subspecies paratuberculosis--a review. Indian journal of experimental biology, 48 (1), 7–16.
92. Sohal, J. S., Singh, S. V., Subhodh, S., Singh, A. V., Singh, P. K., Sheoran, N., Sandhu, K., Narayansamy, K., & Maitra, A. (2007). Mycobacterium avium subspecies paratuberculosis diagnosis and strain typing--present status and future developments. Indian journal of experimental biology, 45(10), 843–852.
93. Stevenson K. (2015). Genetic diversity of Mycobacterium avium subspecies paratuberculosis and the influence of strain type on infection and pathogenesis: a review. Veterinary research, 46(1), 64. https://doi.org/10.1186/s13567-015-0203-2.
94. Sun, L., Chen, Y., Yi, P., Yang, L., Yan, Y., Zhang, K., Zeng, Q., & Guo, A. (2021). Serological detection of Mycobacterium Tuberculosis complex infection in multiple hosts by One Universal ELISA. PloS one, 16(10), e0257920. https://doi.org/10.1371/journal.pone.0257920.
95. Suzuki, A. E., & Inamine, J. M. (1994). Genetic aspects of drug resistance in Mycobacterium avium. Research in microbiology, 145 (3), 210–213. https://doi.org/10.1016/0923-2508(94)90020-5.
96. Tadesse, S., Woldemeskel, M., Medhia, G., Tibbo, M., Molla, B., Abate, G., & Britton, S. (2003). T-cell responses to Mycobacterium avium PPD antigens in gastro-intestinal helminth co-infected chickens in Central Ethiopia. Journal of immunoassay & immunochemistry, 24 (1), 57–72. https://doi.org/10.1081/IAS-120018469.
97. Thegerström, J., Jönsson, B., Brudin, L., Olsen, B., Wold, A. E., Ernerudh, J., & Friman, V. (2012). Mycobacterium avium subsp. avium and subsp. hominissuis give different cytokine responses after in vitro stimulation of human blood mononuclear cells. PloS one, 7 (4), e34391. https://doi.org/10.1371/journal.pone.0034391.
98. Thegerström, J., Marklund, B. I., Hoffner, S., Axelsson-Olsson, D., Kauppinen, J., & Olsen, B. (2005). Mycobacterium avium with the bird type IS1245 RFLP profile is commonly found in wild and domestic animals, but rarely in humans. Scandinavian journal of infectious diseases, 37 (1), 15–20. https://doi.org/10.1080/00365540510026850.
99. Toba, H., Crawford, J. T., & Ellner, J. J. (1989). Pathogenicity of Mycobacterium avium for human monocytes: absence of macrophage-activating factor activity of gamma interferon. Infection and immunity, 57 (1), 239–244. https://doi.org/10.1128/iai.57.1.239-244.1989.
100. Todd, T., Dunn, N., Xiang, Z., & He, Y. (2016). Vaxar: A Web-Based Database of Laboratory Animal Responses to Vaccinations and Its Application in the Meta-Analysis of Different Animal Responses to Tuberculosis Vaccinations. Comparative medicine, 66(2), 119–128.
101. Touray, B. J. B., Hanafy, M., Phanse, Y., Hildebrand, R., & Talaat, A. M. (2023). Protective RNA nanovaccines against Mycobacterium avium subspecies hominissuis. Frontiers in immunology, 14, 1188754. https://doi.org/10.3389/fimmu.2023.1188754.
102. Tran, Q. T., & Han, X. Y. (2014). Subspecies identification and significance of 257 clinical strains of Mycobacterium avium. Journal of clinical microbiology, 52(4), 1201–1206. https://doi.org/10.1128/JCM.03399-13.
103. Turenne, C. Y., Wallace, R., Jr, & Behr, M. A. (2007). Mycobacterium avium in the postgenomic era. Clinical microbiology reviews, 20(2), 205–229. https://doi.org/10.1128/CMR.00036-06.
104. Uchiya, K. I., Asahi, S., Futamura, K., Hamaura, H., Nakagawa, T., Nikai, T., & Ogawa, K. (2018). Antibiotic Susceptibility and Genotyping of Mycobacterium avium Strains That Cause Pulmonary and Disseminated Infection. Antimicrobial agents and chemotherapy, 62(4), e02035-17. https://doi.org/10.1128/AAC.02035-17
105. Weiss, D. J., & Souza, C. D. (2008). Review paper: modulation of mononuclear phagocyte function by Mycobacterium avium subsp. paratuberculosis. Veterinary pathology, 45(6), 829–841. https://doi.org/10.1354/vp.45-6-829
106. Wetzstein, N., Diricks, M., Anton, T. B., Andres, S., Kuhns, M., Kohl, T. A., Schwarz, C., Lewin, A., Kehrmann, J., Kahl, B. C., Schmidt, A., Zimmermann, S., Jansson, M. K., Baron, S. A., Schulthess, B., Hogardt, M., Friesen, I., Niemann, S., & Wichelhaus, T. A. (2024). Clinical and genomic features of Mycobacterium avium complex: a multi-national European study. Genome medicine, 16 (1), 86. https://doi.org/10.1186/s13073-024-01359-8.
107. Wheat, W. H., Casali, A. L., Thomas, V., Spencer, J. S., Lahiri, R., Williams, D. L., McDonnell, G. E., Gonzalez-Juarrero, M., Brennan, P. J., & Jackson, M. (2014). Long-term survival and virulence of Mycobacterium leprae in amoebal cysts. PLoS neglected tropical diseases, 8(12), e3405. https://doi.org/10.1371/journal.pntd.0003405.
108. Whiley, H., Keegan, A., Giglio, S., & Bentham, R. (2012). Mycobacterium avium complex--the role of potable water in disease transmission. Journal of applied microbiology, 113(2), 223–232. https://doi.org/10.1111/j.1365-2672.2012.05298.x.
109. Whittington, R. J., Begg, D. J., de Silva, K., Plain, K. M., & Purdie, A. C. (2012). Comparative immunological and microbiological aspects of paratuberculosis as a model mycobacterial infection. Veterinary immunology and immunopathology, 148 (1-2), 29–47. https://doi.org/10.1016/j.vetimm.2011.03.003.
110. Yamazaki, Y., Danelishvili, L., Wu, M., Macnab, M., & Bermudez, L. E. (2006). Mycobacterium avium genes associated with the ability to form a biofilm. Applied and environmental microbiology, 72(1), 819–825. https://doi.org/10.1128/AEM.72.1.819-825.2006.
111. Zhang, Z., Chang, W., & Ding, J. (2016). Wei sheng wu xue bao. Acta microbiologica Sinica, 56 (10), 1530–1536.
112. Zhu, D. K., Song, X. H., Wang, J. B., Zhou, W. S., Ou, X. M., Chen, H. X., Liu, M. F., Wang, M. S., Jia, R. Y., Chen, S., Sun, K. F., Yang, Q., Wu, Y., Chen, X. Y., & Cheng, A. C. (2016). Outbreak of Avian Tuberculosis in Commercial Domestic Pekin Ducks ( Anas platyrhynchos domestica). Avian diseases, 60(3), 677–680. https://doi.org/10.1637/11396-021916-ResNote.1
113. Держпродспоживслужба України. (2023). Офіційний звіт про поширення інфекційних захворювань у тварин. *Сайт Держпродспоживслужби України*.