DYNAMICS OF THE INTESTINAL AREA AND LYMPHOID FORMATIONS ASSOCIATED WITH ITS MUCOUS MEMBRANE IN THE EARLY STAGES OF POSTNATAL MORPHOGENESIS IN PIGS
Abstract
The purpose of the research was to determine the dynamics of the intestinal area and the lymphoid structures associated with its mucosa in piglets during early postnatal morphogenesis. The material for the study was the intestines of one-day, ten-day, one-month, and two-month-old piglets of large white breed. After dissection of the abdominal cavity, the intestine was washed with running water and the length and width of the mesentery of the small and large intestines cut by the line of attachment were determined. Determination of the dynamics of the area of lymphoid structures associated with the mucous membrane was carried out using the method of total staining according to Hellman. Absolute and relative areas of intestinal sections and lymphoid formations were determined on total preparations. The obtained data were processed by methods of variational statistics. It was established that at the early stages of postnatal morphogenesis in piglets, the absolute area of the intestine gradually and uniformly increases: from one day to one month of age by 43.2% and from one month to two months of age by 48.5%. The absolute area of lymphoid formations associated with the mucous membrane increases by 80.2% from one day to one month of age, and by 14.1% from one month to two months of age, which indicates their uneven growth and development. The absolute area of the intestine increases uniformly, and the most intensive growth of lymphoid formations is observed in the period from one day to one month of age. The intensity of growth of the thin part during postnatal morphogenesis gradually and uniformly decreases, and the thick part increases. The relative area of lymphoid formations increases before and decreases after the monthly age. This increase in thin and thick sections is 7.9% and 2.4%, respectively. The decrease in the relative area of the lymphoid structures of the specified departments occurs by 6.9% and 1.9%, respectively. The obtained data indicate the asynchrony of the growth of the intestine and the lymphoid structures associated with its mucous membranes. This organ grows uniformly during postnatal morphogenesis. The most intensive growth of lymphoid formations is observed in the period from one day to one month of age.
References
2. Bailey, M., Christoforidou, Z., & Lewis, M. C. (2013). The evolutionary basis for differences between the immune systems of man, mouse, pig and ruminants. Veterinary Immunology and Immunopathology, 152, 13–19. doi: 10.1016/j.vetimm.2012.09.022.
3. Bonnardel, J., Da Silva, C., Henri, S., Tamoutounour, S., Chasson, L., Montañana-Sanchis, F., Gorvel, J. P., & Lelouard, H. (2015). Innate and adaptive immune functions of peyer’s patch monocyte-derived cells. Cell Reports, 11, 770–784. doi: 10.1016/j.celrep.2015.03.067. PMID 25921539.
4. Burkey, T. E., Skjolaas, K. A., & Minton J. E. (2009) Board-Invited Review: porcine mucosal immunity of the gastrointestinal tract. Journal of Animal Science, 87 (4), 1493–1501. doi: 10.2527/jas.2008-1330.
5. Cerutti, A. (2008). Location, location, location: B-cell differentiation in the gut lamina propria. Mucosal Immunology, 1 (1), 8–10. doi: 0.1038/mi.2007.8.
6. Helander, H. F., & Fändriks, L. (2014). Surface area of the digestive tract – revisited. Scandinavian Journal of Gastroenterology, 49 (6), 681–689. doi:10.3109/00365521.2014.898326.
7. Chen, Y., Mou, D., Hu, L., Zhen, J., Che, L., Fang, Z., Xu, S., Lin, Y., Feng, B., Li, J., & Wu, D. (2017) Effects of Maternal Low-Energy Diet during Gestation on Intestinal Morphology, Disaccharidase Activity, and Immune Response to Lipopolysaccharide Challenge in Pig Offspring. Nutrients, 9 (10), 1115. doi: 10.3390/nu9101115
8. Choudhury, R., Middelkoop, A., Souza, J. G., Veen, L. A., Gerrits, W. J. J., Kemp, B., Bolhuis, J. E., & Kleerebezem, M. (2021). Impact of early‑life feeding on local intestinal microbiota and digestive system development in piglets. Scientifc Reports, 11:4213. doi: 10.1038/s41598-021-83756-2
9. D’Inca, R., Gras-Le, G. C., Che, L., Sangild, P. T., & Huërou-Luron, I.,. (2011). Intrauterine Growth Restriction Delays Feeding-Induced Gut Adaptation in Term Newborn Pigs. Neonatology, 99 (3), 208–16. doi: 10.1159/000314919
10. Everaert, N., Van Cruchten, S., Weström, B., Bailey, M., Van Ginneken, C., Thymann T., & Pieper, R. (2017) A review on early gut maturation and colonization in pigs, including biological and dietary factors affecting gut homeostasis. Animal Feed Science and Technology, 233, 89–103. doi: 10.1016/j.anifeedsci.2017.06.011
11. Ermund, A., Gustafsson, J. K., Hansson, G. C., & Keita, A. V. (2013). Mucus properties and goblet cell quantification in mouse, rat and human ileal Peyer’s patches. PloS one, 8(12), e83688. doi:10.1371/journal.pone.0083688
12. Gavrylin, P. M., & Nikitina, M. O. (2017). Morphometric parameters of the intestine and aggregated lymphatic nodules of meat rabbits. Regulatory Mechanisms in Biosystems, 8 (4), 649–655. doi: 10.15421/0217100
13. Нaley, Р. J. (2017). The lymphoid system: a review of species differences. Journal of toxicologic pathology, 30 (2), 111–123. doi: 10.1293/tox.2016-0075
14. Hryn, V. H. (2018). Planimetric correlations between Peyer’s patches and the area of small intestine of white rats. Reports of Morphology, 24 (2). 66–72. doi: 10.31393/morphology-journal-2018-24(2)-10
15. Huting, A. M. S., Middelkoop, A., Guan, X., & Molist, F. (2021). Using Nutritional Strategies to Shape the Gastro-Intestinal Tracts of Suckling and Weaned Piglets. Animals, 11 (2), 402. doi: 10.3390/ani11020402
16. Jung, C., Hugot, J. P., & Barreau, F. (2010). Peyer’s Patches: The Immune Sensors of the Intestine. International Journal of Inflammation, 10, 1–12. doi: 10.4061/2010/823710
17. Liu, Y. (2015). Fatty acids, inflammation and intestinal health in pigs. Journal of Animal Science and Biotechnology, 6 (41)
18. Logvinova, V., & Oliyar, А. (2021). Histoarchitectonics of Lymphoid Formations of the Mucosa of the Small Intestine of Muscy Ducks. Bulletin of Sumy National Agrarian University. The Series: Veterinary Medicine, 1 (52), 31–37. doi: 10.32845/bsnau.vet.2021.1.5
19. Maroilley, T., Berri, M.,. Lemonnier, G., Esquerré, D., Chevaleyre, C., Mélo, S., Meurens, F., Coville, J. L., Leplat, J. J.; Rau, A., Bed’hom, B., Vincent-Naulleau, S., Mercat, M. J., Billon, Y., Lepage, P, Rogel-Gaillard C, & Estellé J. (2018). Immunome differences between porcine ileal and jejunal Peyer’s patches revealed by global transcriptome sequencing of gut-associated lymphoid tissues. Scientific Reports, 8: 9077. doi: 10.1038/s41598-018-27019-7
20. Metzler-Zebeli, B. U. (2021). The Role of Dietary and Microbial Fatty Acids in the Control of Inflammation in Neonatal Piglets. Animals, 11 (10), 2781. doi: 10.3390/ani11102781
21. Meyer, A. M., & Caton A. J. (2016). Role of the Small Intestine in Developmental Programming: Impact of Maternal Nutrition on the Dam and Offspring. Advances in Nutrition, 7(1), 169–178, doi:10.3945/an.115.010405
22. Moeser, A. J., Pohl, C. S., & Rajput, M. (2017). Weaning stress and gastrointestinal barrier development: implications for lifelong gut health in pigs. Animal Nutrition, 3 (4), 313–321. doi: 10.1016/j.aninu.2017.06.003
23. Panіkar, І. І., Goral's'kij, L. P., & Kolesnіk, N. L. (2015). Morfologіja ta іmunogіstohіmіja organіv іmunogenezu svinej u perіod postnatal'noї adaptacії. Monografіja. – 258 s. ISBN 966-655-0. (in Ukrainian)
24. Pluske, J. R., Turpin, D. L., & Kim, J. C. (2018). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4 (2), 187–196. doi:10.1016/j.aninu.2017.12.004
25. Pluske, J. R., Kim, J. C., & Black, J. L. (2018). Manipulating the immune system for pigs to optimise performance. Animal Production Science, 58 (4). doi: 10.1071/AN17598
26. Reboldi, A., & Cyster, J. G. (2016). Peyer’s patches: organizing B-cell responses at the intestinal frontier. Immunological reviews, 271, 230–245. doi: 10.1111/imr.12400.
27. Rothkötter H. J. (2009). Anatomical particularities of the porcine immune systemм - A physician's view. Developmental. Comparative Immunology, 33 (3), 267–272. doi:10.1016/j.dci.2008.06.016
28. Samoiliuk, V. V., Havrylin, P. M., Bilyi, D. D., Kozii, M. S., & Maslikov, S. M. (2019). Topohrafiia i mikrostrukturna orhanizatsiia limfoidnykh utvoriv, asotsiiovanykh zi slyzovoiu obolonkoiu kyshechnyka porosiat [Topography and microstructural organization of lymphoid formations associated with the mucous membrane of the intestinal piglets]. Theoretical and Applied Veterinary Medicine, 7 (4). 189–197. doi: 10.32819/2019.74034
29. Skrzypek, T., Kazimierczak, W., Skrzypek, H., Valverde, P. J. L., Godlewski, M., & Zabielski, R. (2018). Mechanisms involved in the development of the small intestine mucosal layer in postnatal piglets. Journal of Physiology and Pharmacology, 69 (1), 127–138. doi: 10.26402/jpp.2018.1.14
30. Schokker, D., Fledderus, J., Jansen, R., Vastenhouw, S. A., de Bree, F. M.; Smits, M. A., & Jansman, A. J. M. (2018). Supplementation of fructooligosaccharides to suckling piglets affects intestinal microbiota colonization and immune development. Journal of Animal Science, 96 (6), 2139–2153. doi:10.1093/jas/sky110
31. Takebayashi, K., Koboziev, I., Ostanin, D. V., Gray, L., Karlsson, F. Robinson-Jackson, S. A., Kosloski-Davidson, M., Dooley, A. B., Zhang, S., & Grisham, M. B. (2011). Role of the gut-associated and secondary lymphoid tissue in the induction of chronic colitis. Inflammatory bowel diseases, 17 (1), 268–78. doi: 10.1002/ibd.21447
32. Wang, H., Li, S., Xu, S., & Feng, J. (2015). Betaine improves growth performance by increasing digestive enzymes activities, and enhancing intestinal structure of weaned piglets. Animal Feed Science and Technology. 267, 114545. doi:10.1016/j.anifeedsci.2020.114545
33. Wiyaporn, M., Thongsong, B., & Kalandakanond-Thongsong, S. (2013). Growth and small intestine histomorphology of low and normal birth weight piglets during the early suckling period. Livestock Science, 158 (1–3), 215–222. doi:10.1016/j.livsci.2013.10.016
34. Xu, R. J., Wang, F., & Zhang, S. H.. (2000) Postnatal adaptation of the gastrointestinal tract in neonatal pigs: a possible role of milk-borne growth factors. Livestock Production Science, 66 (2), 95–107. doi:10.1016/S0301-6226(00)00217-7