EXPERIENCE IN GROWING AND GENETIC POTENTIAL OF QUINOA
Abstract
The article highlights the peculiarities of quinoa as a promising crop for cultivation in Europe and Ukraine. Recently, there has been a differentiation of the food market due to the production of less common plants as a promising high-quality source of food. A deeper understanding of these crops and their potential role will help to secure the future and meet the food and nutritional needs of society. Quinoa (Chenopodium quinoa Willd.) is considered to be one of the most promising species in addressing food security challenges in the 21st century due to its increased resistance to extreme environmental conditions and high potential yields Quinoa can be used for crop diversification and as an alternative one for the development of marginal agricultural land. The genetic potential of the quinoa crop is part of the cultural heritage, and its preservation is the responsibility of genetic banks in many countries. The growing demand for dietary and organic products has contributed to the cultivation of quinoa outside the region of its origin – South America. The possibilities and prospects of quinoa growing in Europe have been proven by many studies. Based on results of quinoa introduction on the European continent, a basic model of breeding and technological modernisation of the crop has been formed; it takes into account such aspects as photoperiod, sowing, and weed control. The introduction of quinoa in Ukraine is concentrated mainly in the Forest-Steppe and Polissya regions. The varietal potential of quinoa in Ukraine is ensured by the presence of three registered varieties oriented to the Steppe (Olymp), Forest-Steppe and Polissya zones (Quartet, Komyza). The yield level declared by the originators ranges from 1.1 to 2.4 t/ha. Sumy NAU has developed a basic technology for growing the crop in the Forest-Steppe zone (Kvartet and Komyza varieties). Critical links (requiring breeding and technological enhancement) in the technology of quinoa growing in the region have been identified. The e process success of spreading quinoa in Ukraine is constrained by the low level of consumption and a set of technological factors. Breeding modernisation can be an important step in solving the problems of introducing the crop in Ukraine by improving the consumer characteristics of it and increasing the level of variety resistance to native pests.
References
2. Alandia, G., Rodriguez, J. P., Jacobsen, S. E., Bazile, D., & Condori, B. (2020) Global expansion of quinoa and challenges for the Andean region. Global Food Security, 26, 100429. doi: https://doi.org/10.1016/j.gfs.2020.100429
3. Aluwi, N. A., Murphy, K. M., & Ganjyal, G. M. (2017). Physicochemical characterization of different varieties of quinoa. Cereal Chem. 94, 847–856. doi: 10.1094/CCHEM-10-16-0251-R
4. Anaya, R. B., De La Cruz, E., Muñoz-Centeno, L. M., Cóndor, R., León, R. & Carhuaz, R. (2022) Food and medicinal uses of ancestral Andean grains in the districts of quinua and acos vinchos (Ayacucho-Peru). Agronomy, 12, 1014. doi: 10.3390/agronomy12051014
5. Andreotti, F., Bazile, D., Biaggi, M.C., CalloConcha, D., Jacquet, J., Jemal, O.M., King, O.I., Mbosso, C., Padulosi, S., Speelman, E. N. & Van Noordwijk, M. (2022) When neglected species gain global interest: lessons learned from quinoa's boom and bust for teff and minor millet. Global Food Security 32, 100613. doi: 10.1016/j.gfs.2022.100613
6. Angeli, V., Miguel Silva, P., Crispim Massuela, D., Khan, M. W., Hamar, A.; Khajehei, F., Graeff-Hönninger, S. & Piatti, C. (2020) Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “Golden Grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods, 9(2), 216. https://doi.org/10.3390/foods9020216
7. Asher, A., Galili, S., Whitney, T., & Rubinovich, L. (2020) The potential of quinoa (Chenopodium quinoa) cultivation in Israel as a dual-purpose crop for grain production and livestock feed. Sci. Horti. 272, 109534. doi: 10.1016/j.scienta.2020.109534
8. Aydoğdu, M., & Koç, A. (2021) Screening quinoa. Crop and Pasture Science, doi: 10.1071/CP20508, 72, 6, 416-425
9. Bazile, D., & Baudron, F. (2015) The dynamics of the global expansion of quinoa growing in view of its high biodiversity. In State of the Art Report on Quinoa Around the World, 44–55.
10. Bazile, D., Jacobsen, S. E., & Verniau, A. (2016). The global expansion of quinoa: trends and limits. Front Plant Sci. 7, 622. doi: 10.3389/fpls.2016.00622
11. Bazile, D., Martinez Enrique, A., Negrete Sepulveda, J., Thomet, M., Chia, E., Hocdé, H., & Nuñez, L. (2014) Biocultural Heritage: Quinoa as an important resource to be maintained through tourism experiences for food security in the face of climate change. Tour. Leis. Glob. Chang., 1, 10–13.
12. Beccari, G., Quaglia, M., Tini, F., Pannacci, E., & Covarelli, L. (2021) Phytopathological threats associated with quinoa (Chenopodium quinoa Willd.) Cultivation and Seed Production in an Area of Central Italy. Plants, 10(9), 1933. doi: 10.3390/plants10091933, 10, 9
13. Bedoya-Perales, N. S., Pumi, G., Mujica, A., Talamini, E., & Padula, A. D. (2018) Quinoa expansion in Peru and its implications for land use management. Sustainability, 10, 532. https://www.mdpi.com/2071-1050/10/2/532#
14. Bedoya-Perales, N. S., Pumi, G., Talamini, E., & Padula, A. D. (2018) The quinoa boom in Peru: will land competition threaten sustainability in one of the cradles of agriculture? Land Use Policy, 79, 475–480. doi: 10.1016/j.landusepol.2018.08.039
15. Bhargava, A., & Ohri, D. (2016) Origin of Genetic Variability and Improvement of Quinoa (Chenopodium quinoa Willd.). In: Rajpal, V., Rao, S., Raina, S. (eds) Gene Pool Diversity and Crop Improvement. Sustainable Development and Biodiversity. 10. Springer, Cham. doi: 10.1007/978-3-319-27096-8_8
16. Bioversity International FAO, Proinpa, I., & Ifad, A. (2013) Descriptors for quinoa (Chenopodium quinoa willd.) and wild relatives, in Bioversity International, FAO, PROINPA, INIAF and IFAD. (Rome: Bioversity International and FAO).
17. Bois, J. F., Winkel, T., Lhomme, J. P., Raffaillac, J. P. & Rocheteau, A. (2006) Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: Effects on germination, phenology, growth and freezing. European Journal of Agronomy, 25, 299–308. doi: 10.1016/j.eja.2006.06.007
18. Bonifacio, A., Gomez-Pando, L., & Rojas, W. (2015) Quinoa breeding and modern variety development. In D. Bazile, D. Bertero, & C. Nieto (Eds.). State of the art report of quinoa in the world in 2013, FAO and CIRAD, 172–191..
19. Buckland, K., Rasmussen, A., & Smith, E. (2020) Quinoa production for the Willamette Valley. Oregon State University Extension Service. https://catalog.extension.oregonstate.edu/em9300/html
20. Buckland, K. R., Reeve, J. R., Creech, J. E., & Durham, S. L. (2018) Managing soil fertility and health for quinoa production and weed control in organic systems. Soil & Tillage Research, 184, 52–61. doi: 10.1016/j.still.2018.07.001
21. Bvenura, C., & Kambizi, L. (2022) “Future grain crops,” in Future Foods Global Trends, Opportunities, and Sustainability Challenges, ed. R. Bhat (London: Academic Press), 81–105. doi: 10.1016/B978-0-323-91001-9.00032-3
22. Callisaya,V., Roly, A., Sea, Y.& Edwin, E. (2015). Assessment of change in quinoa expansion in a year child using Landsat images. RIIARn [online]. 2 (1), 35–44.
23. Cepková, P. H., Dostalíková, L., Viehmannová, I., Jágr, M., & Janovská, D. (2022) Diversity of quinoa genetic resources for sustainable production: A survey on nutritive characteristics as influenced by environmental conditions. Front. Sustain. Food Syst., 6, 501. doi: 10.3389/fsufs.2022.960159
24. Chevarria-Lazo, M., Bazile, D., Dessauw, D., Louafi, S., Trommetter, M., & Hocdé, H. (2015) Quinoa and the exchange of genetic resources: improving the regulation systems, in State of the Art Report on Quinoa Around the World in 2013, eds D. Bazile, H. D. Bertero, and C. Nieto (Roma: FAO & CIRAD). 83–105. doi :10.13140/RG.2.1.5076.4249
25. Choukr-Allah, R., Rao, N. K., Hirich, A., Shahid, M., Alshankiti, A., Toderich, K., & Butt, K. (2016) Quinoa for
marginal environments: toward future food and nutritional security in MENA and Central Asia Regions. Frontiers in Plant
Science, 7. 346. doi: 10.3389/fpls.2016.00346
26. Craine, E. B., & Murphy, K. M. (2020) Seed composition and amino acid profiles for quinoa grown in Washington State. Front. Nutr. 7, 126. doi: 10.3389/fnut.2020.00126
27. Christensen, S. A., Pratt, D. B., Pratt, C., Nelson, P. T., Stevens, M. R., Jellen, E. N., Coleman, C. E., Fairbanks, D. J., Bonifacio, A., & Maughan, P. J. (2007) Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genet Resour, 5, 82–95. doi : 10.3390/plants10122802
28. Curti, R. N., de la Veja, A. J., Andrade, A. J., Bramardi, S. J., & Bertero, H. D. (2016) Adaptive responses of quinoa to diverse agro-ecological environments along an altitudinal gradient in Northwest Argentina. Field Crops Research, 189, 10–18. https://doi.org/10.1016/j.fcr.2016.01.014
29. De Arco, S. N. (2015) Quinoa’s Calling. In Quinoa: Improvement and Sustainable Production; Murphy, K., Matanguihan, J., Eds.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 211–226.
30. De Bock, P., Daelemans, P., Selis, L., Raes, L., Vermeir, K. & Eeckhout, P. M. (2021) Comparison of the chemical and technological characteristics of whole meal flours obtained from amaranth (Amaranthus sp.), quinoa (Chenopodium quinoa) and buckwheat (Fagopyrum sp.) seeds. Foods, 10, 651. doi: 10.3390/foods10030651
31. De Bock, P., Van Bockstaele, P., Muylle, F., Quataert, H., Vermeir, P., Eeckhout, P. M., et al. (2021) Yield and nutritional characterization of thirteen quinoa (Chenopodium quinoa Willd.) varieties grown in north-west Europe-part I. Plants 10, 689. doi: 10.3390/plants10122689
32. De Santis G., Ronga, D., Caradonia F., Ambrosio, T., Troisi, J., Rascio, A., Fragasso, M., Pecchioni, N., & Rinaldi, M. (2018) Evaluation of two groups of quinoa (Chenopodium quinoa Willd.) accessions with different seed colours for adaptation to the Mediterranean environment, Crop and Pasture Science, 69, 12, (1264). doi : 10.1071/CP18143
33. Dost, M. (2015) Field evaluation results across locations and identification of suitable quinoa varieties. In Wrap up Workshop of Regional Quinoa Project (TCP/RAB/3403–FAO); Food and Agriculture Organization of the United Nations: Rome, Italy.
34. Drew, J., Dickinson, A., Sueiro, C., & Stepp, J. (2017) Ancient Grains and New Markets: The selling of quinoa as story and substance, corporate social responsibility and corporate governance (Developments in Corporate Governance and Responsibility; Emerald Publishing Limited: Bingley, UK. 11, 251–274.
35. Drucker, A. G., Pascual, U., Narloch, U., Midler, E., Soto, J. L., Pinto, M., Valdivia, E., & Rojas, W. (2015) Voluntary payments for the conservation of quinoa diversity: Exploring the role of payments for ecosystem services in the Andes. In State of the Art Report of Quinoa in the World in 2013; FAO & CIRAD: Rome, Italy, 106–119. http://www.fao.org/3/ai4042e.pdf
36. El-Serafy, R. S., El-Sheshtawy, A. N. A., Abd El-Razek, U. A., Abd El-Hakim, A. F., Hasham, M. M. A., Sami, R. Al-Mushhin, A.M. (2021) Growth, yield, quality, and phytochemical behavior of three cultivars of quinoa in response to moringa and azolla extracts under organic farming conditions. Agronomy, 11, 186. doi: 10.3390/agronomy11112186
37. Erley, G. S., Kaul, H. P., Kruse, М., & Aufhammer, W. (2005) Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization, European Journal of Agronomy, 22 (1), 95–100. doi: 10.1016/j.eja.2003.11.002
38. Eurisco (2022). The European Search Catalogue for Plant Genetic Resources (EURISCO). Available online at: https://eurisco.ipk-gatersleben.de/apex/f?p=10357::::P57_NATIONAL_INVENTORY,P57_INCLUDE_SYNONYMS:12,NO (accessed Februry 11, 2022).
39. FAOSTAT (2021). Total production and yield of quinoa in 1961–2017. FAO. http://www.fao.org/faostat/en/#data
40. Fan Zhu (2023) Development of quinoa grain as a sustainable crop. Quinoa Chemistry and Technology, 1-15 doi :10.1016/B978-0-323-99909-0.00011-8
41. Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant’Ana, H. M., Chaves, J. B. P., & Coimbra, J. S. D. R. (2017) Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr., 57, 1618–1630. doi: 10.1080/10408398.2014.1001811.
42. Flórez-Martínez, D. H., Rodríguez-Cortina, J., Chavez-Oliveros, F. L., Aguilera-Arango, G. A., Morales-Castañeda, A. (2023) Current trends and prospects in quinoa research: An approach for strategic knowledge areas. Food Science & Nutrition doi:https://doi.org/10.1002/fsn3.3891
43. Fuentes, F., Bazile, D., Bhargava, A., & Martinez, E. A. (2012) Implications of farmers’ seed exchanges for on-farm conservation of quinoa, as revealed by its genetic diversity in Chile. Journal of Agricultural Science 150, 702–716. doi:10.1017/S0021859612000056
44. Fuentes, F., & Paredes-Gonzales, X. (2015) Nutraceutical perspectives of quinoa: Biological properties and functional applications. In State of the Art Report of Quinoa in the World in 2013; Bazile, D., Bertero, D., Nieto, C., Eds.; FAO & CIRAD: Rome, Italy, 286–299. http://www.fao.org/3/a-i4042e.pdf
45. Galluzzi, G., & Noriega, I. L. (2014) Conservation and use of genetic resources of underutilized crops in the Americas – a continental analysis. Sustainability 6, 980–1017. doi: 10.3390/su6020980
46. Geren, H. (2015) Effects of different nitrogen levels on the grain yield and some yield components of quinoa (Chenopodium quinoa Willd.) under Mediterranean climatic conditions. Turk. J. Field Crop, 20, 59–64. doi: 10.17557/.39586
47. Gesinski, К. (2012) Evaluation of the development and yielding potential of Chenopodium quinoa Willd. under the climatic conditions of Europe. Part one: accomodation of Chenopodium quinoa (Willd.) to different conditions. Acta Agrobotanica, 61(1). doi:10.5586/aa.2008.025
48. González, J. A., Mercado, M. I. & Martinez-Calsina, L. (2022) Plant density effects on quinoa yield, leaf anatomy, ultrastructure and gas exchange. The Journal of Agricultural Science. 160(5), 349-359. doi: 10.1017/S0021859622000533
49. Granado-Rodriguez, S., Aparicio, N., Matias, J., Perez-Romero, L. F., Maestro, I., Graces, I. (2021). Studying the impact of different field environmental conditions on seed quality of quinoa: the case of three different years changing seed nutritional traits in southern Europe. Front. Plant Sci. 12, 649132. doi: 10.3389/fpls.2021.649132
50. Granado-Rodriguez, S., Vilarino-Rodriguez, S., Maestro-Gaitan, I., Matias, J., Rodriguez, M. J., Calvo, P. (2021). Genotype-dependent variation of nutritional quality-related traits in quinoa seeds. Plants, 10, 128. doi: 10.3390/plants10102128
51. Graziano, S., Agrimonti, C., Marmiroli, N., & Gullì, M. (2022) Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review, Trends in Food Science & Technology, 125, 154-165. doi : 10.1016/j.tifs.2022.04.007
52. Grimberg, A., Ganapathi, V. S., Ritva A.M., Bengtsson, T., Alandia, G., & Anders S. C. (2022) Transcriptional regulation of quinoa seed quality: identification of novel candidate genetic markers for increased protein content. Frontiers in Plant Science, 13. doi : 10.3389/fpls.2022.816425
53. Hinojosa, L., González, J., Barrios-Masias, F., Fuentes, F., & Murphy, K. (2018) Quinoa abiotic stress responses: A Review. Plants, 7(4), 106. doi : 10.3390/plants7040106
54. Hinojosa, L., Leguizamo, A., Carpio, C., Munoz, D., Mestanza, C., Ochoa, J. (2021). Quinoa in Ecuador: recent advances under global expansion. Plants, 10, 298. doi: 10.3390/plants10020298
55. Hussain, M. I., Farooq, M., Syed, Q. A., Ishaq, A., Al-Ghamdi, A. A. & Hatamleh, A. A. (2021). Botany, nutritional value, phytochemical composition and biological activities of quinoa. Plants, 10, 2258. doi: 10.3390/plants10112258
56. Isam, A., Ahmed, M., Al Juhaimi, F., & Musa Özcan, M. (2021) Insights into the nutritional value and bioactive properties of quinoa (Chenopodium quinoa): past, present and future prospective. International Journal of Food Science & Technology, 56, 8, 3726-3741. doi: 10.1111/ijfs.15011
57. Isobe, K., Sugiyama, H., Okuda, D., Murase, Y., Harada, H., Miyamoto, M., Koide, S., Higo, M., & Torigoe, Y. (2016) Effects of sowing time on the seed yield of quinoa (Chenopodium quinoa Willd.) in South Kanto, Japan. Agricultural Science, 7, 146–153. doi: 10.4236/as.2016.73014
58. Israel, D., & Bilsborrow, P. (2022) Optimizing quinoa growth cycle duration in northeast England by varying the sowing date. Agronomy Journal, 114, 4, 2186–2199. doi: 10.1002/agj2.21131
59. Jacobsen, S. E. (2011) The situation for quinoa and its production in southern Bolivia: from economic success to environmental disaster. J. Agron. Crop Sci., 197, 390–399. doi: 10.1111/j.1439-037X.2011.00475
60. Jacobsen, S. E. (2017) The scope for adaptation of quinoa in Northern Latitudes of Europe. J. Agron. Crop Sci., 203, 603–613. doi: 10.1111/jac.12228
61. Jacobsen, S. E., & Christiansen, J. L. (2016) Some agronomic strategies for organic quinoa (Chenopodium quinoa Willd). J. Agron. Crop Sci., 202, 454–463. doi: 10.1111/jac.12174
62. Jacobsen, S. E., & Mujica, A. (2002) Genetic resources and breeding of the Andean grain crop quinoa (Chenopodium quinoa Willd). Plant Genetic Res. Newsletter, 130, 54–61.
63. Jovanovic, Z., Stikic, R., & Jacobsen, S-E. (2022) Climate Change: challenge of introducing quinoa in Southeast European Agriculture. In book: Biology and Biotechnology of Quinoa, 345-371. doI:10.1007/978-981-16-3832-9_16
64. Karyotis, T., Iliadis,C., Noulas, C. & Mitsibonas, T. (2003). Preliminary research on seed production and nutrient content for certain quinoa varieties in a saline–sodic soil. Journal of Agronomy and Crop Science. 189(6), 402–408
65. Kitaguchi, T., Ogra, Y., Iwashita, Y., & Suzuki, K. T. (2008) Speciation of selenium in selenium-enriched seeds, buckwheat (Fagopyrum esculentum Moench) and quinoa (Chenopodium quinoa Willdenow). Eur Food Res Technol., 227(5),1455–6067.
66. Lesjak, J., & Calderini, D. F. (2017) Increased night temperature negatively affects grain yield, biomass and grain number in Chilean quinoa. Front. Plant Sci. 8, 352. doi: 10.3389/fpls.2017.00352
67. López-Marqués, R.L., Nørrevang, A.F., Ache, P., Moog, M., Visintainer, D., Wendt, T., Østerberg, J.T., Dockter, C., Jørgensen, M.E., Salvador, A.T., Rainer, H., Gao, C., Jacobsen, S-E., Shabala, S., & Palmgren, M. (2020) Prospects for the accelerated improvement of the resilient crop quinoa. Journal of Experimental Botany, 71, 18, 5333–5347. doi: 10.1093/jxb/eraa285
68. Maliro, M. F. A., Guwela, V. F., Jacinta, N. & Murphy, K. M. (2017) Preliminary studies of the performance of quinoa (Chenopodium quinoa Willd.) genotypes under irrigated and rainfed conditions of central Malawi. Front. Plant Sci. , 8, 227.
69. Maradini, A. M., Pirozi, M. R., Borges, J. T. D. Sant'ana, H. M. P., Chaves, J. B. P., & Coimbra, J. (2017) Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 57, 1618–1630. doi: 10.1080/10408398.2014.100181
70. Mosyakin, S.,& Schwartau, V. (2015) Quinoa as a promising pseudocereal crop for Ukraine. Agricultural Science and Practice, 2(1), 3-11. doi: 10.15407/agrisp2.01.003
71. Murphy, K. M., Bazile, D., Kellogg, J., & Rahmanian, M. (2016) Development of a worldwide consortium on evolutionary participatory breeding in quinoa. Frontier in Plant Scince, 7, 608. doi: 10.3389/fpls.2016.00608
72. Noulas С., Tziouvalekas, M., Vlachostergios, D., Baxevanos, D., Karyotis, T., & Iliadis, C. (2017) Adaptation, agronomic potential, and current perspectives of quinoa under Mediterranean conditions: case studies from the Lowlands of Central Greece. Communications in Soil Science and Plant Analysis, 48 (22), 2612–2629. doi:10.1080/00103624.2017.1416129
73. Nowak, V., Du, J. & Charrondière, U. R. (2015) Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem., 193, 47–54. doi: 10.1016/j.foodchem.2015.02.111
74. Owji T., Mohajeri F., Madandoust M., & Salehi M. (2020) Evaluation of the effect of seed rate and nitrogen fertilizer management on agronomic characteristics and yield components of spring quinoa (Chenopodium quinoa Willd.). International Journal of Pharmaceutical and Phytopharmacological Research, 10(4), 264–272. 26. doi: https://doi.org/10.12911/22998993/146515
75. Phara, B., Bockstaele, F., Muylle, H., Quataert, P., Vermeir, P., Eeckhout, M., & Cnops,G. (2021) Yield and nutritional characterization of thirteen quinoa (Chenopodium quinoa Willd.) Varieties Grown in North-West Europe—Part I, Plants, 10, 12, 2689. doi : 10.3390/plants10122689
76. Phara, B., Cnops, G., Muylle, H., Quataert, P., Eeckhout, M., & Bockstaele, F. (2022) Physicochemical characterization of thirteen quinoa (Chenopodium quinoa Willd.) Varieties Grown in North-West Europe—Part II, Plants, 11, 3, 265. doi : 10.3390/plants11030265
77. Pinto, A. A., Fischer, S., Wilckens, R., Bustamante, L. & Berti, M. T. (2021) Production efficiency and total protein yield in quinoa grown under water stress. Agriculture, 11, 1089. doi: 10.3390/agriculture11111089
78. Prado, F. E., Fernandez-Turiel, J. L., Tsarouchi, M., Psaras, G. K., & Gonzalez, J. A. (2014) Variation of seed mineral concentrations in seven quinoa cultivars grown in two agroecological sites. Cereal Chem., 91, 453–459. doi: 10.1094/CCHEM-08-13-0157-R
79. Prager, A., Boote, K. J., Munz, S., & Graeff-Hönninger, S. (2019) Simulating growth and development processes of quinoa (Chenopodium quinoa Willd.): adaptation and evaluation of the CSM-CROPGRO Model, Agronomy, 9, 12, 832. doi : 10.3390/agronomy9120832
80. Prager, A., Munz, S., Nkebiwe, P. M., Mast, B., & Graeff-Honninger, S. (2018) Yield and quality characteristics of different quinoa (Chenopodium quinoa Willd.) cultivars grown under field conditions in southwestern Germany. Agronomy, 8, 197. doi: 10.3390/agronomy8100197
81. Rachid, F., Said, W., Fatima, A., Oudou, I. A., Ouafae, B., Ragab, R. (2015) Response of quinoa to different water management strategies: Field experiments and Saltmed model application results. Irrig. Drain. 64, 232–238.
82. Rahut, D. B., Aryal, J. P., Manchanda, N., & Sonobe, T. (2022) Expectations for household food security in the coming decades: A global scenario, in Future Foods. Global Trends, Opportunities, and Sustainability Challenges, ed. R. Bhat. (London: Academic Press), 107–131.
83. Razzaghi, F., Bahadori-Ghasroldashti, M. R., Henriksen, S., Sepaskhah, A. R. & Jacobsen, S. E. (2020). Physiological characteristics and irrigation water productivity of quinoa (Chenopodium quinoa Willd.) in response to deficit irrigation imposed at different growing stages—A field study from Southern Iran. J. Agro. Crop Sci., 206(3), 390-404.
84. Reguera, M., Conesa, C. M., Gil-Gomez, A., Haros, C. M., Perez-Casa, M. A. & Briones-Labarca, V. (2018) The impact of different agroecological conditions on the nutritional composition of quinoa seeds. Peer J, 6, e4442. doi: 10.7717/peerj.4442
85. Repo-Carrasco-Valencia, R., Basilio-Atencio, J., Isabel Luna-Mercado, G., Pilco-Quesada, S., & Vidaurre-Ruiz, J. (2022) Andean Ancient Grains: nutritional value and novel uses. Biology and Life Sciences Forum, 8, 1, (15). doi : 10.3390/blsf2021008015
86. Rojas, W., Milton, P., Alanoca, C., Gómez Pando, L., Leónlobos, P. & Alercia, A. (2015) Quinoa genetic resources and ex situ conservation. In State of the Art Report on Quinoa Around the World in 2013, eds. D. Bazile, D. Bertero and C. Nieto (Rome: FAO/CIRADE), 56–82.
87. Ruiz, K. B., Biondi, S., Oses, R., Acuña-Rodríguez, I. S., Antognoni, F., Martinez- Mosqueira, E. A. (2014) Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development, 34, 349–59. doi:10.1007/s13593-013-0195-0
88. Ruiz, K. B., Biondi, S., Oses, R., Acuna-Rodriguez, I. S., Antognoni, F., Martinez-Mosqueira, E. A., et Schmidt, D., Verruma-Bernardi, M. R., Forti, V. A., & Borges, M. (2021) Quinoa and amaranth as functional foods: a review. Food Rev. Int., 37, 1–20. doi: 10.1080/87559129.2021.1950175
89. Singh, M. P., Soni, K., Bhamra, R., & Mittal, R. K. (2022) Superfood: value and need. Curr. Nutr. Food Sci. 18, 65–68. doi: 10.2174/1573401317666210420123013
90. Singh, U., Praharaj, C. S., Ram, D., Jat, N. K., & Kumar, M. (2021) Agronomic manipulations for cultivation of quinoa (Chenopodium quinoa Willd.). In: Varma, A. (eds) Biology and Biotechnology of Quinoa. Springer, Singapore. doi: 10.1007/978-981-16-3832-9_6
91. Shokry, A. M. (2016) The usage of quinoa flour as a potential ingredient in production of meat burger with functional properties. Middle East Journal of Applied Sciences, 6, 1128–1137.
92. Stanschewski, C. S., Rey, E., Fiene, G., Craine, E. B., Wellman, G., Melino, V.J., Patiranage, D. S. R., Johansen, K., Schmöckel, S. M., Bertero, H. D., Oakey, H., Afzal, I., Raubach, S., Miller, N., Streich, J., Buchvaldt Amby, D., Emrani, N., Warmington, M., Moussa, M.A.A., Wu, D., Jacobson, D., Andreasen, C., Jung, C., Murphy, K., Bazile, D. & Tester, M. (2021) Quinoa phenotyping methodologies: an international consensus. Plants, 10, 1759, 1–52. doi: 10.3390/plants10091759.
93. Tabatabaei, I., Alseekh, S., Shahid, M., Leniak, E., Wagner, M. & Mahmoudi, H. (2022) The diversity of quinoa morphological traits and seed metabolic composition. Sci. Data, 9, 1–7. doi: 10.1038/s41597-022-01399-y
94. Tanwar, B., Goyal, A., Irshaan, S., Kumar, V., Sihag, M.K., Patel, A., & Kaur, I. (2019) Quinoa. In Whole Grains and Their Bioactives; John Wiley & Sons, Ltd.: Chichester, UK, 269–305.
95. Thiam, E., Allaoui, A., & Benlhabib, O. (2021) Quinoa productivity and stability evaluation through varietal and environmental interaction. Plants, 10, 714. doi: 10.3390/plants10040714
96. Trotsenko V. I., Kovalenko I. M. & Ilchenko V. O (2017). Stan ta perspektyvy kul'tury kinoa v pivnichno-skhidnomu lisostepu Ukrayiny. [State and prospects of quinoa crop in the north-eastern forest-steppe of Ukraine] Visnyk Sums'koho natsional'noho ahrarnoho universytetu. Seriya: Ahronomiya i biolohiya 9, 77-81. [in Ukranian]
97. Trotsenko, N., Zhatova, H. & Radchenko, M. (2023). Growth and yield capacity of quinoa (Chenopodium quinoa Willd.) depending on the sowing rate in the conditions of the North-Eastern Forest-Steppe of Ukraine. AgroLife Scientific Journal, 12(2), 206–213. doi: https://doi.org/10.17930/AGL2023226
98. Tschopp, M., Bieri, S., & Rist, S. (2018) Quinoa and production rules: how are cooperatives contributing to governance of natural resources? J. Commons, 12, 402–427. doi: 10.18352/ijc.826
99. Vidueiros, S. M., Curti, R. N., Dyner, L. M., Binaghi, M. J., Peterson, G., Bertero, H. D., & Pallaro, A. N. (2015) Diversity and interrelationships in nutritional traits in cultivated quinoa (Chenopodium quinoa Willd.) from Northwest Argentina. J. Cereal Sci., 62, 87–93. doi: https://doi.org/10.1016/j.jcs.2015.01.001
100. Wali, A. M., Kenawey, M. K., Ibrahim, O. M., & El Lateef, E.M.A. (2022) Productivity of quinoa (Chenopodium quinoa L.) under new reclaimed soil conditions at north-western coast of Egypt. Bull. Natl. Res. Cent. , 46, 38.
101. Wang, N., Wang, F. X., Shock, C. C., Meng, C. B., & Qiao, L. F. (2020) Effects of management practices on quinoa growth, seed yield, and quality. Agronomy 10, 445. doi: 10.3390/agronomy10030445
102. Wang, S., & Zhu, F. (2016) Formulation and Quality Attributes of Quinoa Food Products. Food Bioprocess Technol., 9, 49–68.
103. Wang, N., Wang, F., Shock, C.C., Meng, C., & Qiao, L. (2020) Effects of management practices on quinoa growth, seed yield, and quality. Agronomy, 10(3), 445. doi:10.3390/agronomy1003044
104. Zurita-Silva, A., Fuentes, F., Zamora, P., Jacobsen, S. E. & Schwember, A. R. (2014) Breeding quinoa (Chenopodium quinoa Willd.): Potential and perspectives. Molecular Breeding, 3, 13–30. doi:10.1007/s11032-014-0023-5