OROBANCHE CUMANA WALLR. IN CROPS OF HELIÁNTHUS ANNUUS

Keywords: Ogobanche сumana Wallr, race, sunflower, hybrid, root system, root secretions.

Abstract

The research is aimed at finding and developing effective technologies to protect sunflower from the aggressive flower parasite Orobanche cumana Wallr. From the northern Steppe of Ukraine, the broomrape is actively moving to the central, northern and western regions of the country. The aim of the research was to establish the racial composition of the sunflower broomrape population in the Forest Steppe and Polissya. The object of research in the vegetation experiment was broomrape seeds. Samples of the parasite seeds were collected on some of the most infected sunflower fields in the Forest- Steppe and Polissya. Sunflower hybrids P63LL06, P64LC108 (XF 6003), P64LL125 (XF 13406), P63LE113 (XF 9026), P64HH106 (XF 13707), PR 64F66, P64LE25 (SX 9004), P64LE99 (XF 9002) were used to identify broomrape races. Sunflower hybrids were evaluated for resistance to broomrape in soil culture using a modified method and the roll method of seed germination. The racial composition of broomrape on sunflower crops in the conditions of the Forest-Steppe and Polissya of Ukraine was studied. Differentiation of sunflower hybrids grown by resistance to the parasite was carried out. The sunflower hybrid P63LL06, tolerant to race E, was severely affected by broomrape. On average, there were 12 nodules of the parasite per sunflower plant. Sunflower hybrids P64LC108 (XF 6003), P64HH106 (XF 13707), PR 64F66, resistant to race G, were slightly affected by broomrape. On average, there were 2-3 nodules of the parasite per sunflower plant. The hybrids P64LL125 (XF 13406), P63LE113 (XF 9026), P64LE25 (SX 9004), resistant to race E + system 2, were infected with broomrape to an average extent. On average, there were 4-6 nodules of the parasite per sunflower plant. No sunflower hybrids with complete immunity to broomrape were found. It has been established that the broomrape population parasitizing sunflower fields has a high degree of virulence that overcomes the immunity of the best foreign-bred hybrids resistant to E, F and G races of this parasite. The emergence of new very aggressive races of broomrape (E, F, G and H) in the Forest-Steppe and Polissya indicates an important need to solve the problem of creating breeding material resistant to new races of this parasitic plant, studying the cellular and molecular mechanisms of sunflower resistance to the pathogen. Based on the research, the reasons for the widespread spread of broomrape in the fields in the central, northern and western regions of the country were summarized. Some details of the emergence of cellular and molecular mechanisms of sunflower resistance to broomrape are considered.

References

1. Abdalla, M.M.F., Saleh, H.A.M.A. & Khater, M.A. (2020). Detection of genetic variations in Orobanche crenata using inter simple sequence repeat (ISSR) markers. Bulletin of the National Research Centre, 44, 139. doi: 10.1186/s42269-020-00390-0.
2. Albanova, I.A., Zagorchev, L.I., Teofanova, D.R., Odjakova, M.K., Kutueva, L.I., & Ashapkin, V.V. (2023). Host Resistance to Parasitic Plants—Current Knowledge and Future Perspectives. Plants, 12(7), 1447. doi: 10.3390/plants12071447 .
3. Aly, R., Matzrafi, M. & Bari, V.K. (2021). Using biotechnological approaches to develop crop resistance to root parasitic weeds. Planta, 253, 97. doi: 10.1007/s00425-021-03616-1.
4. Bercovich, N., Genze, N., Todesco, M., Gregory, L. O., Légaré, J.-S., Huang, K., Rieseberg, L. H. & Grimm, D. G. (2022). HeliantHOME, a public and centralized database of phenotypic sunflower data. Scientific Data, 9, 735. doi: 10.1038/s41597-022-01842-0.
5. Calderón-González, Á., Pérez-Vich, B., Pouilly, N., Boniface, M-C., Louarn, J., Velasco, L., & Muños, S. (2023). Association mapping for broomrape resistance in sunflower. Frontiers in Plant Science, 13, 1056231. doi: 10.3389/fpls.2022.1056231.
6. Chander, S., Mena, H.P., Kumar, A., Kumar, N., Singh, V.K., & Garcia-Oliveira, A.L. (2022). Genetic and molecular technologies for achieving high productivity and improved quality in sunflower. In S.S. Gosal, & S.H. Wani (Eds.), Accelerated Plant Breeding 4, 419-449 doi: 10.1007/978-3-030-81107-5_12.
7. Convention on Biological Diversity. (1992). Retrieved from https://zakon.rada.gov.ua/laws/show/995_030.
8. Convention on International Trade in Endangered Species of Wild Fauna and Flora. (1979, June). Retrieved from https://zakon.rada.gov.ua/laws/show/995_129.
9. Cuccurullo, A., Nicolia, A., & Cardi, T. (2022). Resistance against broomrapes (Orobanche and Phelipanche spp.) in vegetables: a comprehensive view on classical and innovative breeding efforts. Euphytica, 218(6), 82. doi: 10.1007/s10681-022-03035-7.
10. Cvejić, S., Radanović, A., Dedić, B., Jocković, M., Jocić, S., & Miladinović, D. (2020) Genetic and genomic tools in sunflower breeding for broomrape resistance. Genes, 11(2), 152.
11. De Luque, A.P., González-Verdejo, C.I., Lozano-Baena, M.-D., Dita, M.A., Cubero, J.I., González-Melendi, P., Risueño, M.C., Rubiales, D. (2006). Protein cross-linking, peroxidase and β-1,3-endoglucanase involved in resistance of pea against Orobanche crenata. J. Exp. Bot, 57, 1461–1469. DOI: 10.1093/jxb/erj127.
12. Duca, M., Boicu, A., Clapco, S., & Port, A. (2020). Comparative analysis of two Orobanche cumana Wallr. accessions with a different virulence. Acta Physiologiae Plantarum, 42(11), 170. doi: 10.1007/s11738-020-03152-7.
13. Duriez, P., Vautrin, S., Auriac, MC., Bazerque, J., Boniface, M.-C., Callot, C., Carrère, S., Cauet, S., Chabaud M., Gentou, F., Lopez-Sendon, M., Paris, C., Pegot-Espagnet, P., Rousseaux, J.-C., Pérez-Vich, B., Velasco, L., Bergès, H., Piquemal, J., & Muños, S. (2019). A receptor-like kinase enhances sunflower resistance to Orobanche cumana. Nature Plants, 5, 1211-1215. doi: 10.1038/s41477-019-0556-z.
14. Fernández-Aparicio, M., del Moral, L., Muños, S., Velasco, L., & Perez‑Vich, B. (2022). Genetic and physiological characterization of sunflower resistance provided by the wild-derived OrDeb2 gene against highly virulent races of Orobanche cumana Wallr. Theoretical and Applied Genetics, 135(2), 501-525. doi: 10.1007/s00122-021-03979-9.
15. Fujimoto, S.Y., Ohta, M., Usui, A., Shinshi, H., Ohme-Takagi, M. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box–mediated gene expression. Plant Cell, 12, 393–404. doi:10.1105/tpc.12.3.393.
16. Khablak, S.G., Abdullaeva, Y.A., & Ryabovol, L.O. (2018). Sensitivity of sunflower hybrids to new races of Broomrape. Factors of Experimental Evolution of Organisms, 23, 55-57.
17. Konarska, A., & Chmielewski, P. (2020). Taxonomic traits in the microstructure of flowers of parasitic Orobanche picridis with particular emphasis on secretory structures. Protoplasma, 257, 299-317. doi: 10.1007/s00709-019-01438-3.
18. Krupp, A., Heller, A. & Spring, O. (2019). Development of phloem connection between the parasitic plant Orobanche cumana and its host sunflower. Protoplasma, 256, 1385-1397. doi: 10.1007/s00709-019-01393-z.
19. Kukin V. F. (1960). Method of evaluation of sunflower for resistance to infestation. Plant protection from pests and diseases, № 7, С. 39.
20. Le Ru, A., Ibarcq, G., Boniface, M.C., Baussart, A., Muños, S. & Chabaud, M. (2021). Image analysis for the automatic phenotyping of Orobanche cumana tubercles on sunflower roots. Plant Methods, 17, 80. doi: 10.1186/s13007-021-00779-6.
21. Liu, S., Wang, P., Liu, Y., Wang, P. (2020). Identification of candidate gene for resistance to broomrape (Orobanche cumana) in sunflower by BSA-seq. Oil Crop Sci, 5. doi:10.1016/j.ocsci.2020.05.003.
22. Louarn, J., Boniface, M-C., Pouilly, N., Velasco, L, Pérez-Vich, B., Vincourt. P., & Muños, S. (2016). Sunflower Resistance to Broomrape (Orobanche cumana) Is Controlled by Specific QTLs for Different Parasitism Stages. Frontiers in Plant Science, 7, 590. doi: 10.3389/fpls.2016.00590.
23. Meena, H.P., & Sujatha, M. (2022). Sunflower Breeding. In: D.K. Yadava, H.K. Dikshit, G.P. Mishra, & S. Tripathi, (Eds.), Fundamentals of Field Crop Breeding, 971-1008, Springer, Singapore. doi: 10.1007/978-981-16-9257-4_19.
24. Pouvreau, J.B., Poulin, L., Huet, S., & Delavault, P. (2021). Strigolactone-Like Bioactivity via Parasitic Plant Germination Bioassay. Methods in molecular biology, 2309, 59-73. doi: 10.1007/978-1-0716-1429-7_6.
25. Rauf, S. (2019). Breeding Strategies for Sunflower (Helianthus annuus L.) Genetic Improvement. In J. Al-Khayri, S. Jain, & D. Johnson (Eds.), Advances in plant breeding strategies: industrial and food crops, 637-673. Springer, Cham. doi: 10.1007/978-3-030-23265-8_16.
26. Shi, B., & Zhao, J. (2020). Recent progress on sunflower broomrape research in China. Oilseeds and fats, Crops and Lipids, 27(2), 30. doi: 10.1051/ocl/2020023.
27. Sisou, D., Tadmor, Y., Plakhine, D., Ziadna, H., Hübner, S., & Eizenberg, H. (2021). Biological and transcriptomic characterization of pre-haustorial resistance to sunflower broomrape (Orobanche cumana W.) in sunflowers (Helianthus annuus). Plants, 10(9), 1810. doi: 10.3390/plants10091810.
28. Soares-Silva, M., Diniz, FF., Gomes, G.N., Bahia, D. (2016). The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids. Front. Microbiol. 7:183. doi: 10.3389/fmicb.2016.00183.
29. Vidhyasekaran, P. (2020). Manipulation of reactive oxygen species, redox and nitric oxide signaling systems to activate plant innate immunity for crop disease management. In Plant innate immunity signals and signaling systems, 51-135. Signaling and communication in plants. Springer, Dordrecht. doi: 10.1007/978-94-024-1940-5_3.
30. Vurro, M., Boari, A., Thiombiano, B., & Bouwmeester, H. (2019). Strigolactones and parasitic plants. In H. Koltai, & C. Prandi, (Eds.), Strigolactones – biology and applications, 89-120. Springer, Cham. doi: 10.1007/978-3-030-12153-2_3.
31. Xi, J., Ding, Z., Xu, T., Qu, W., Xu, Y., Ma, Y., Xue, Q., Liu, Y., & Lin, Y. (2022). Maize rotation combined with streptomyces rochei d74 to eliminate Orobanche cumana seed bank in the farmland. Agronomy, 12(12), 3129. doi: 10.3390/agronomy12123129.
32. Yang, C., Fu, F., Zhang, N. Wang, J., Luyang, H., Islam, F., Bai, Q., Yun, X., & Zhou, W. (2020). Transcriptional profiling of underground interaction of two contrasting sunflower cultivars with the root parasitic weed Orobanche cumana. Plant Soil, 450, 303-321. doi: 10.1007/s11104-020-04495-3.
33. Yang, C., Xu, L., Zhang, N., Islam, F., Song, W., Hu, L., Liu, D., Xie, X., Zhou, W. (2017). iTRAQ-based proteomics of sunflower cultivars differing in resistance to parasitic weed Orobanche cumana. Proteomics, 17, 1700009. doi.org/10.1002/ pmic.201700009.
34. Ye, X., Zhang, M., Zhang, M., & Ma, Y. (2020). Assessing the Performance of Maize (Zea mays L.) as Trap Crops for the Management of Sunflower Broomrape (Orobanche cumana Wallr.). Agronomy, 10(1), 100. doi: 10.3390/agronomy10010100.
Published
2023-12-27
How to Cite
Khablak, S. H., & Spychak, V. M. (2023). OROBANCHE CUMANA WALLR. IN CROPS OF HELIÁNTHUS ANNUUS. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 54(4), 62-67. https://doi.org/10.32782/agrobio.2023.4.9