THE ASSESSMENT OF ONTOGENETIC AND VITALITY STRUCTURES OF POPULATIONS OF LATHYRUS VERNUS (L.) BERNH IN THE GÖTTINGEN FOREST (LOWER SAXONY, GERMANY)

Keywords: population analysis, beech forests, Göttinger Wald, vitality analysis.

Abstract

In today's world, the issues of biodiversity conservation and climate change mitigation are closely interconnected. They involve the implementation of a set of measures aimed at preventing the loss of forest resources in individual regions and the planet as a whole. In this context, understanding the characteristics and patterns of populations of forest plants, including those forming the herbaceous layer, becomes crucial. The purpose of this publication was to establish and analyze the ontogenetic and vitality structures of populations of Lathyrus vernus (L.) Bernh in the forest phytocenoses of the Göttingen Forest, located in southern Lower Saxony, Germany. Six populations were studied, which grew in phytocenoses differing in age, management practices, and nature conservation regimes. The ontogenetic and vitality structures of L. vernus populations were studied according to commonly accepted approaches. Vitality analysis indicated that all studied populations of L. vernus are balanced, with a quality index (Q) ranging from 0.2000 to 0.3000. Primary forests showed the least representation of individuals with the highest vitality level, accounting for 20.0–23.3%. In old forests under forest management, their share is 1.4–2.4 times higher, ranging from 33.3% to 56.7%. It was found that all studied populations have incomplete ontogenetic structures. Four populations have well-defined centered spectra, characterized by the predominance of generative individuals. In general, in terms of ontogenetic structure, populations showed significantly greater differences compared to vitality structure, with variations in the values of the regeneration index from 8.82% to 60.0%, generativity from 33.33% to 82.35%, and aging index from 0 to 38.24% (according to I.M. Kovalenko). Against the background of forest management application, a significant increase in the range of values for regeneration and generativity indices was recorded, and, as a result, the representation of populations of different ontogenetic types: young, transitional, mature. Populations from primeval phytocenoses were exclusively "mature." The objectively established facts about the vitality and ontogenetic structure confirm that L. vernus is a species sensitive not only to changes in ecologo-cenotic features of phytocenoses but also to the forest management system and the peculiarities of protection regimes implemented in primeval forests. The results of the assessment of ontogenetic and vitality structures indicate that the conditions of the Göttingen Forest, located in southern Lower Saxony, Germany, are favorable for the formation and functioning of L. vernus populations.

References

1. Albert, M., Nagel, J., Schmidt, M., Nagel, R.-V. & Spellmann, H. (2021). Eine neue Generation von Ertragstafeln für Eiche, Buche, Fichte, Douglasie und Kiefer. [A new generation of yield tables for oak, beech, spruce, Douglas fir, and pine] doi: 10.5281/zenodo.6343907 (in German)
2. Buresch, M., Evers, J., Hamkens, H., Meesenburg, H., Nagel, R.-V., Paar, U., Spellmann, H. & Sutmöller, J. (2023). Grundlagen der klimaangepassten Baumartenempfehlung. In: Nordwestdeutsche Forstliche Versuchsanstalt, Regionale Waldbauplanung in Sachsen-Anhalt als Beitrag zur Klimafolgenanpassung und nachhaltigen Sicherung der Waldfunktion, Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt, [Fundamentals of climate-adapted tree species recommendation. In: Northwest German Forestry Research Institute, Regional forest planning in Saxony-Anhalt as a contribution to climate adaptation and sustainable assurance of forest functions, Contributions from the Northwest German Forestry Research Institute] Bd. 21. Universitätsverlag Göttingen, 47–64. doi: 10.17875/gup2023-2399 (in German)
3. Didukh, Ya. P. (2018). Biotop yak systema: struktura, dynamika, ekosystemni posluhy [Biotope as a system: structure, dynamics, ecosystem services]. Ukrainskyi botanichnyi zhurnal, 75, 5, 405–420 (in Ukrainian).
4. Ehrlén, J. & Münzbergová, Z. (2009). Timing of flowering: opposed selection on different fitness components and trait covariation. The American Naturalist, 173 (6), 819–830. doi: 10.1086/598492
5. Ehrlén, J. & Valdés, A. (2020). Climate drives among-year variation in natural selection on flowering time. Ecology Letters, 23 (4), 653–662. doi: 10.1111/ele.13468
6. Glatthorn, J., Appleby, S., Balkenhol, N., Kriegel, P., Likulunga, L. E., Lu, J. Z. & Ammer, C. (2023). Species diversity of forest floor biota in non-native Douglas-fir stands is similar to that of native stands. Ecosphere, 14(7), e4609. doi: 10.1002/ecs2.4609
7. Greiser, C., Hylander, K., Meineri, E., Luoto, M. & Ehrlén, J. (2020). Climate limitation at the cold edge: contrasting perspectives from species distribution modelling and a transplant experiment. Ecography, 43(5), 637–647. doi: 10.1111/ecog.04490
8. Hamann, A., Roberts, D. R., Quinn E., Barber, Q. E., Caroll, C. & Nielsen, S. E. (2015). Velocity of climate change algorithms for guiding conservation and management. Global Change Biology 21, 997–1004. doi: 10.1111/gcb.12736
9. Havrylenko, O. P. (2019). Konflikty pryrodokorystuvannia v konteksti vtraty ekosystemnykh posluh [Nature use conflicts in the context of loss of ecosystem services]. Naukovyi visnyk Khersonskoho derzhavnoho universytetu. Seriia: Heohrafichni nauky, (10), 101–106 (in Ukrainian).
10. Iskender, N. Y., Yaylı, N., Yasar, A. & Çoskunçelebı, K. (2009). Volatile constituents of the flower, leaf and stem of Lathyrus vernus (L.) grown in Turkey. Asian Journal of Chemistry, 21(8), 6290-6294.
11. Kimengsi, J.N., Owusu, R. & Charmakar, S. (2023). A global systematic review of forest management institutions: towards a new research agenda. Landsc Ecol 38, 307–326 doi: 10.1007/s10980-022-01577-8
12. Kölling, C. & Mette T. (2022). Wälder im Klimawandel – Neues Klima erfordert neue Baumarten. [Forests in Climate Change - New Climate Requires New Tree Species] In: K. Berr und C. Jenal (Hrsg.), Wald in der Vielfalt möglicher Perspektiven, Raum Fragen: Stadt – Region – Landschaft, Springer VS Verlag. doi: 10.1007/978-3-658-33705-6_7 (in German)
13. Lieven S., Fasse F. & Nagel R.-V. (2023). Alternative Baumarten – ein Lösungsbeitrag für die Klimaanpassung? In: Nordwestdeutsche Forstliche Versuchsanstalt (Hrsg.), Regionale Waldbauplanung in Sachsen-Anhalt als Beitrag zur Klimafolgenanpassung und nachhaltigen Sicherung der Waldfunktion, Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt. [Alternative Tree Species – a Contribution to Climate Adaptation? In: Northwest German Forestry Research Institute (Ed.), Regional Forest Development Planning in Saxony-Anhalt as a Contribution to Climate Change Adaptation and Sustainable Assurance of Forest Function, Contributions from the Northwest German Forestry Research Institute] Bd.21. Universitätsverlag Göttingen, 175–186. doi: 10.17875/gup2023-2406 (in German)
14. Mette, T., Brandl, S. & Kölling, C. (2021). Climate Analogues for Temperate European Forests to Raise Silvicultural Evidence Using Twin Regions. Sustainability 2021, 13, 6522. doi: 10.3390/su13126522
15. Nordwestdeutsche Forstliche Versuchsanstalt (Hrsg.) (2023). Regionale Waldbauplanung in Sachsen-Anhalt als Beitrag zur Klimafolgenanpassung und nachhaltigen Sicherung der Waldfunktion. Beiträge aus der Nordwestdeutschen Forstlichen Versuchsanstalt, [Regional Forest Development Planning in Saxony-Anhalt as a Contribution to Climate Change Adaptation and Sustainable Assurance of Forest Functions. Contributions from the Northwest German Forestry Research Institute] Bd. 21. Universitätsverlag Göttingen, 211. doi: 10.17875/gup2023-2394 (in German)
16. Östergård, H., Hambäck, P. A. & Ehrlén, J. (2007). Pre-dispersal seed predation: the role of fruit abortion and selective oviposition. Ecology, 88(12), 2959-2965. doi: 10.1890/07-0346.1
17. Pretzsch H., del Río M., Biber P., Arcangeli C., Bielak K., Brang P., Dudzinska M., Forrester D.I., Klädtke J., Kohnle U., Ledermann T., Matthews R., Nagel J., Nagel R., Nilsson U., Ningre F., Nord-Larsen T., Wernsdörfer H. & Sycheva E. (2019). Maintenance of long-term experiments for unique insights into forest growth dynamics and trends: Review and perspectives. European Journal of Forest Research, 138(1), 165–185. doi: 10.1007/s10342-018-1151-y
18. Regionale Waldbauplanung in Sachsen-Anhalt als Beitrag zur Klimafolgenanpassung und nachhaltigen Sicherung der Waldfunktion (2023). [Regional Forest Development Planning in Saxony-Anhalt as a Contribution to Climate Change Adaptation and Sustainable Assurance of Forest Functions] Göttingen: Universitätsverlag Göttingen. doi: 10.17875/gup2023-2394 (in German)
19. Sherstiuk, M. (2017). The analysis of vitality structure of Chimaphila umbellata (L.) W. Barton cenopopulations in forest phytocenoses of the Novgorod-Sivers’k Polissia. Science Rise: Biological Science, (1 (4), 40–45. doi: 10.15587/2519-8025.2017.94019
20. Sherstuk, M. (2016). Morphometric Parameters Oxycoccus palustris Pers. in Palustre and Palustre Forest Phytocenoses of Ukrainian Polissya. Notes in Current Biology, (7(332), 78–83. doi: 10.29038/2617-4723-2016-332-7-78-83
21. Shuai Ma, Hui-Yong Wang, Xiaomian Zhang, Liang-Jie Wang & Jiang Jiang, A. (2022). nature-based solution in forest management to improve ecosystem services and mitigate their trade-offs, Journal of Cleaner Production, 351, 131557, ISSN 0959-6526, doi: 10.1016/j.jclepro.2022.131557
22. Skliar, V. & Sherstuk, M. (2016). Size structure of phytopopulations and its quantitative evaluation. EUREKA. Life Sciences, (1), 9-15. doi: 10.21303/2504-5695.2016.00047
23. Skliar, V., Kovalenko, I., Skliar, Iu. & Sherstiuk, M. (2019). Vitality structure and its dynamics in the process of natural reforestation of Quercus robur L. AgroLife Scientific Journal, 8 (1).
24. Skliar, V., Kyrylchuk, K., Tykhonova, O., Bondarieva, L., Zhatova, H., Klymenko, A., Bashtovyi, M. & Zubtsova, I. (2020). Ontogenetic structure of populations of forest-forming species of the Left-Bank Polissya of Ukraine. Baltic Forestry, 26(1). doi: 10.46490/BF441
25. Skliar, V., Sherstuk, M. & Skliar, Iu. (2016). Аlgorithm of comprehensive assessment of individual’s morphological integration of plants contrast biomorfs. QUAERE 2016 (vol. VI.): Interdisciplinary Scientific Conference for PhD students and assistance, 393–403
26. Skliar, V.H. (2013). Dynamika vitalitetnykh parametriv populiatsii lisoutvoriuvalnykh vydiv Novhorod-Siverskoho Polissia: teoretychni zasady ta sposoby otsinky [Dynamics of vital parameters of populations of forest-forming species of Novgorod-Siverskyi Polissia: theoretical principles and methods of assessment.]. Ukrainskyi botanichnyi zhurnal, 70 (5), 624-629 (in Ukrainian).
27. Koskela, T., Karppinen, H., Forest Owners’ Intention to Safeguard Forest Biodiversity (2023). An Application of the Theory of Planned Behavior, Forest Science. doi: 10.1093/forsci/fxad044
28. Thomas, J., Brunette, M. & Leblois, A. (2022). The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners, Forest Policy and Economics, Volume 135, 2022. doi: 10.1016/j.forpol.2021.102662
29. Tsarenko, O. M., Zlobin, Yu. A., Skliar, V.H. & Panchenko, S. M. (2000). Kompiuterni metody v silskomu hospodarstvi ta biolohii. [Computer methods in agriculture and biology]. Universytetska knyha, Sumy, 203 (in Ukrainian)
30. Zumr, V., Nakládal, O., Bílek, L. & Remeš, J. (2023). The diameter of beech snags is an important factor for saproxylic beetle richness: Implications for forest management and conservation, Forest Ecosystems, Volume 10, 100143. doi: 10.1016/j.fecs.2023.100143
31. Valdés, A., Ehrlén, J. (2021). Plant–animal interactions mediate climatic effects on selection on flowering time. Ecology, 102 (9). doi: 10.1002/ecy.3466
32. Yakubenko, B. Ye., Popovych, S. Yu., Ustymenko, P. M., Dubyna, D. V. & Churilov, A. M. (2020). Heobotanika: metodychni aspekty doslidzhen [Geobotany: methodological aspects of research], 316. (in Ukrainian).
33. Zhezhkun, I. M. (2021). Stan ta perspektyvy vykorystannia v Ukraini ekosystemnykh posluh lisiv [Status and prospects of use of ecosystem services of forests in Ukraine]. Materialy Tretoi Vseukrainskoi naukovo-praktychnoi konferentsii «Yevrointehratsiia ekolohichnoi polityky Ukrainy». Odesa, Odeskyi derzhavnyi ekolohichnyi universytet. 201, 110 (in Ukrainian).
34. Zlobin, Yu. A., Skliar, V. G. & Klymenko, G. O. (2022) Biologiia ta ekologiia fitopopuliatsii [Biology and ecology of phytopopulations] Sumy: Universytetska knyga, 512 (in Ukrainian).
35. Zoric, L., Merkulov, L., Lukovic, J., Boza, P. & Krstic, B. (2011). Evaluation of forage quality of Lathyrus L. species based on histological characteristics. Acta Agronomica Hungarica, 59 (1), 47–55. doi: 10.1556/AAgr.59.2011.1.5
Published
2023-12-27
How to Cite
Yaroshenko, N. P. (2023). THE ASSESSMENT OF ONTOGENETIC AND VITALITY STRUCTURES OF POPULATIONS OF LATHYRUS VERNUS (L.) BERNH IN THE GÖTTINGEN FOREST (LOWER SAXONY, GERMANY). Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 54(4), 68-73. https://doi.org/10.32782/agrobio.2023.4.10