INFLUENCE OF ENVIRONMENTAL CONDITIONS ON SEED PRODUCTIVITY OF ASPARAGUS COWPEA VARIETIES (VIGNA UNGUICULATA (L.) WALP. SUBSP. SESQUIPEDALIS (L.) VERDC.)
Abstract
For the first time in the rainfed conditions of the Kyiv region, a study was conducted on the effect of plant density on the seed productivity of cowpea asparagus, which will improve the technology of growing the crop and expand the species diversity of leguminous vegetable plants. The main methods of studying this problem are field – to identify the interaction of the object of study with biotic and abiotic factors of the northern part of the Forest-Steppe of Ukraine, statistical – to assess the reliability of the results. Plant density of vegetable cowpea varieties influenced the duration of interphase periods. Unequal growing conditions in cenosis of different densities are expressed by the duration of the growing season. With an increase in plant density, the duration of the period from mass germination to the onset of technical maturity decreased. This pattern was characteristic of all phases of growth and development of vegetable cowpea plants. The earliest ripening varieties were U-tia-Kontou and Kafedralna with thickened crops (143 thousand units/ha) with the shortest duration of the growing season of 135–141 days. On average, during the studied years, the sum of effective air temperatures (> 10 °C) during the growing season of cowpea varieties ranged from 938 to 1114 °C, and the amount of precipitation, respectively, from 125 to 136 mm. Within the studied variants, a direct strong correlation was found between the yield of cowpea varieties grown at different plant densities and the sum of effective temperatures (r = from 0.72 to 0.94) and precipitation (r = from 0.66 to 0.77). An increase in the sum of effective temperatures by 1 °C leads to an increase in seed yield by 0.8-0.9 kg/ha, and an increase in precipitation by 1 mm leads to an increase in seed yield by 3.0-9.0 kg/ha. The sowing scheme of 70 x 25 cm proved to be optimal for both cowpea varieties under the studied conditions. Due to the optimal growth conditions, cowpea grown at a density of 57 thousand units/ha has a high productivity of one plant (30–30.3 g/plant) and a weight of 1000 seeds (186–190 g). The results also indicate significant differences between cowpea varieties in terms of agronomic traits and seed quality. The best adaptive cowpea variety in the northern part of the Forest-Steppe of Ukraine was Kafedralna.
References
2. Akasapu, K., & Uppaluri, R. V. (2022). Nutritional Efficacy Based Vegetables Selection for the Development of Ready to Cook Soup Mix Formulations. In North-East Research Conclave, 157-192. Singapore, Springer Nature Singapore. doi: 10.1007/978-981-19-9704-4_9
3. Ariviani, S., Mudalifah, I., Ishartani, D., & Fauza, G. (2020, May). Investigation on antioxidant activity, protein, and whiteness degree of elicited cowpea sprouts flour prepared with various drying technique. In AIP Conference Proceedings (Vol. 2219, No. 1). AIP Publishing. doi: 10.1063/5.0003640
4. Bastos, L. M., Carciochi, W., Lollato, R. P., Jaenisch, B. R., Rezende, C. R., Schwalbert, R., & Ciampitti, I. A. (2020). Winter wheat yield response to plant density as a function of yield environment and tillering potential: A review and field studies. Frontiers in plant science, 11, 54. doi: 10.3389/fpls.2020.00054
5. Bobos, I., Komar, O., & Fedosiy, I. (2022). Assessment of growth and development of cowpea varieties based on phenological and morphological observations. Plant and Soil Science, 13(4), 7-16. doi: 10.31548/agr.13(4).2022.7-16
6. Bobos, І., Kоmаr, О., Havrys, I., Shemetun, O., & Kokoiko, V. (2024). Ecological stability, plasticity, and adaptability of cowpea varieties (Vigna unguiculata (L.) Walp. subsp. sesquipedalis (L.) Verdc.). Scientific Horizons, 27(5), 68-78. doi: 10.48077/scihor5.2024.68
7. Bobos, І., Sych Z., Fedosiy I., & Komar, O. Species: Cowpea Vigna unguiculata (L.) Walp. subsp. sesquipedalis (L.) Verde. Variety denomination: Kafedralna. Applicant: Nаtіоnаl Unіversіtу оf Lіfe аnd Envіrоnmentаl Scіences оf Ukrаіne. Variety owner: Nаtіоnаl Unіversіtу оf Lіfe аnd Envіrоnmentаl Scіences оf Ukrаіne. Year of state registration of intellectual property rights: 2023. Data of priority: 2023-05-11. Year of state registration of intellectual property rights for variety desseminution: 2023. Certificate of state registration No.: 230516 from 31.08.2023. Patent (PBR): 230332 from 10.08.2023. Access mode: http://sort.sops.gov.ua/cultivar/view/20129
8. Bondarchuk, O. P., Rakhmetov, D. B., Vergun, O. M., & Rakhmetova, S. O. (2022). Morphological features and productive potential of plants of the genus Vigna Savi. in the conditions of the Right-Bank Forest-Steppe of Ukraine. Plant Varieties Studying and Protection, 18(1), 4-13. doi: 10.21498/2518-1017.18.1.2022.257582
9. Boukar, O., Abberton, M., Oyatomi, O., Togola, A., Tripathi, L., & Fatokun, C. (2020). Introgression breeding in cowpea [Vigna unguiculata (L.) Walp.]. Frontiers in Plant Science, 11, 567425. doi: 10.3389/fpls.2020.567425
10. Dhaliwal, S. K., Talukdar, A., Gautam, A., Sharma, P., Sharma, V., & Kaushik, P. (2020). Developments and prospects in imperative underexploited vegetable legumes breeding: a review. International Journal of Molecular Sciences, 21(24), 9615. doi: 10.3390/ijms21249615
11. Gnamien, Y. G., Nanti, B. T. J. I., Ayolié, K., & Kouadio, Y. J. (2023). Influence of seeding density on agronomic parameters of cowpea (Vigna unguiculata L.) accession grown in Daloa, west center of Côte d’Ivoire. GSC Biological and Pharmaceutical Sciences, 22(3), 039-048. doi: 10.30574/gscbps.2023.22.3.0102
12. Ishikawa, H., Batieno, B. J., Fatokun, C., & Boukar, O. (2022). A high plant density and the split application of chemical fertilizer increased the grain and protein content of cowpea (Vigna unguiculata) in Burkina Faso, West Africa. Agriculture, 12(2), 199. doi: 10.3390/agriculture12020199
13. Ishikawa, H., Ikazaki, K., & Iseki, K. (2021). Visual observation of cowpea pod elongation to predict nitrogen accumulation in immature seeds. Plant Production Science, 24(2), 224-229. doi: 10.1080/1343943X.2020.1828949
14. Kamara, A. Y., Omoigui, L. O., Kamai, N., Ewansiha, S. U., & Ajeigbe, H. A. (2018). Improving cultivation of cowpea in West Africa. In: Sivasankar, S., et al., Eds., Achieving Sustainable Cultivation of Grain Legumes, Burleigh Dodds Science Publishing Limited, 2, 235-252. doi: 10.19103/AS.2017.0023.30
15. Kebede, E., & Bekeko, Z. (2020). Expounding the production and importance of cowpea (Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food & Agriculture, 6(1), 1769805. doi: 10.1080/23311932.2020.1769805
16. Manjesh, M., Adivappar, N., Srinivasa, V., & Girijesh, G. K. (2019). Effect of plant densities and different environments on productivity and profitability of yardlong bean (Vigna unguiculata sub sp. sesquipedalis). Legume Research-An International Journal, 42(3), 348-353. doi: 10.18805/LR-3958
17. Mekonnen, T. W., Gerrano, A. S., Mbuma, N. W., & Labuschagne, M. T. (2022). Breeding of vegetable cowpea for nutrition and climate resilience in Sub-Saharan Africa: progress, opportunities, and challenges. Plants, 11(12), 1583. doi: 10.3390/plants11121583
18. Ojiewo, C. O., Rubyogo, J. C., Wesonga, J. M., Bishaw, Z., Gelalcha, S. W., & Abang, M. M. (2018). Mainstreaming efficient legume seed systems in Eastern Africa: Challenges, opportunities and contributions towards improved livelihoods (pp. 72). Rome, Food and Agriculture Organization of the United Nations.
19. Oroka, F. O. (2017). Mineral fertilizer and inter-row spacing effects on vegetative growth, nodulation and dry matter yield of cowpea (Vigna unguiculata L. walp). Int. J. Agric. Rural. Dev, 20, 3066-3073.
20. Paraschivu, M., Cotuna, O., Sărățeanu, V., Durău, C. C., & Păunescu, R. A. (2021). Microgreens-current status, global market trends and forward statements. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development, 21(3), 633-639.
21. Punniyamoorthy, D., & Jegadeesan, S. (2023). Genetics and Genomics of Drought and Heat Tolerance in Cowpea, Mung Bean and Black Gram. In Legumes: Physiology and Molecular Biology of Abiotic Stress Tolerance, 203-233. Singapore, Springer Nature Singapore. doi: 10.1007/978-981-19-5817-5_8
22. Rao, N.G. (2018). Statistics for agricultural sciences (3rd Ed). Hyderabad: BS Publications.
23. Singh, A. K. (2020). Early History of Crop Presence/Introduction into India: VI. African and West and Central Asian Leguminous Crops. Asian Agri-History, 24(1).
24. Sуch, Z.D., Bоbоs, І.M. & Komar, І.О. (2023). Recоmmendаtіоns fоr grоwіng vegetаble vіgnа (Vіgnа unguіculаtа Fruwіrth.). NUBіP, Kуіv оf Ukrаіne.
25. Tehulie, N. S., Fikadu, T., & Purba, J. H. (2021). Response of Mungbean [Vigna radiata (L.) Wilczek] Varieties to Plant Spacing under Irrigation at Gewane, Northeastern Ethiopia. Agro Bali: Agricultural Journal, 4(1), 1-14. doi: 10.37637/ab.v4i1.613
26. Tofa, A. I., Kyei-Boahen, S., Solomon, R., Ajeigbe, H. A., & Kamai, N. (2018). Effects of plant density on the performance of cowpea in Nigerian savannas. Experimental Agriculture, 54(1), 120-132. doi: 0.1017/S0014479716000715
27. Vergun, O., Rakhmetov, D., Bondarchuk, O., Rakhmetova, S., Shymanska, O., & Fishchenko, V. (2022). Biochemical Composition of Vigna spp. Genotypes Raw. Agrobiodiversity for Improving Nutrition, Health and Life Quality, 6(1). doi: 10.15414/ainhlq.2022.0005
28. Verma, S. K., Singh, C. K., Taunk, J., Chandra Joshi, D., Kalia, S., Dey, N., & Singh, A. K. (2022). Vignette of Vigna domestication: From archives to genomics. Frontiers in Genetics, 13, 960200. doi: 10.3389/fgene.2022.960200
29. Woghiren, A. I., Awodoyin, R. O., Taiwo, D. M., & Olatidoye, O. R. (2021). Effect of Plant Population Density on Growth and Weed Smothering Ability of Cowpea (Vigna unguiculata (L.) Walp.). Nigeria Agricultural Journal, 52(2), 339-345.
30. Wu, X., Cortés, A. J., & Blair, M. W. (2022). Genetic differentiation of grain, fodder and pod vegetable type cowpeas (Vigna unguiculata L.) identified through single nucleotide polymorphisms from genotyping-by-sequencing. Molecular Horticulture, 2(1), 8. doi: 10.1186/s43897-022-00028-x