RUDERAL VEGETATION OF THE DANUBE BIOSPHERE RESERVE OF THE NATIONAL ACADEMY OF SCIENCES OF UKRAINE AND MEASURES OF ITS RESTRUCTURING OPTIMIZATION
Abstract
The ruderal vegetation of the nature reserves, especially areas outside of absolute reserve zones, is a source of alien species that lead to the transformation of natural vegetation. The habitats across of the Danube Biosphere Reserve, which are in the stages of intensive formation, are characterized by successful development of ruderal communities. These processes are also facilitated by the excessive transformation of geocomplexes, in particular in the buffer zone and the zone of anthropogenic landscapes as a result of large-scale hydraulic engineering construction, and the transformation of the large areas in the estuary zone into agricultural land, quarry sand mining (Zhebriyansk coastal ridge), grazing, reed mowing in industrial extend, burning, reforestation (Zhebriyansk coastal ridge), recreation, pollution of the aquatic and terrestrial environment, etc. Based on the phytosociological studies of 1998–2021 and the analysis of the authors' vegetation plots using the modified TWINSPAN algorithm, the syntaxonomy of the ruderal vegetation of the Danube Biosphere Reserve was clarified and measures for constructive optimization of its territories were proposed. The distribution of the 25 vegetation associations and 5 unranked communities belonging to 6 phytosociological classes (Stellarietea mediae, Artemisietea vulgaris, Polygono-Poetea annuae, Galio-Urticetea, Bidentetea, Robinietea) was established. The main natural and anthropogenic factors for the ruderal vegetation formation are the type and extend of soil disturbance. The landscape geomorphology, soil composition, moisture and light conditions also have prominent impact. The peculiarities of the coenofloras of studied vegetation are high proportion of neophytes and considerable representation of native species of a broad ecological range. The proposed measures for the restructurisation of the ruderal vegetation included considering the most recent anthropogenic transformations (military changes, functioning of the grain corridor, the extension of rewilding, etc.). The results of the studies will be the scientific basis for monitoring and managing of disturbed ecosystems, improving the effectiveness of measures to restore and optimize natural vegetation.
References
2. Bănăduc, D., Rey, S, Trichkova, T., Lenhardt, M., & Curtean-Bănăduc, A. (2016). The Lower Danube River – Danube Delta – North West Black Sea: A pivotal area of major interest for the past, present and future of its fish fauna – a short review. Sci. Total Environ., 545–546, 137–151. doi: 10.1016/j.scitotenv.2015.12.058
3. Brignone, N.F., Pozner, R., & Denham, S.S. (2022). Macroevolutionary trends and diversification dynamics in Atripliceae (Amaranthaceae s.l., Chenopodioideae): a first approach. Annals of Botany, 130(2), 199–214. doi: 10.1093/aob/mcac085
4. Bürger, J., Metcalfe, H., von Redwitz, C., Cirujeda, A., Fogliatto, S., Fried, G., Fu Dostatny, D., Glemnitz, M., Gerowitt, B., González-Andújar, J.L., Hernández Plaza, E., Izquierdo, J., Kolářová, M., Ņečajeva, J., Petit, S., Pinke, G., Schumacher, M., Ulber, L., & Vidotto, F. (2020). Arable Weeds and Management in Europe. Vegetation Classification and Survey, 1, 169–170. doi: 10.3897/VCS/2020/61419
5. Chytrý, M. (Ed.). (2009). Vegetace České republiky. 2, Ruderální, plevelová, skalní a suťová vegetace [Vegetation of the Czech Republic. 2, Ruderal, weed, rock and scree vegetation],Vyd. 1. Academia, Praha, 524 (in Czech).
6. De Groot, R.S., Wilson, M.A., & Boumans, R.M. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 41, 393–408. doi: 10.1016/S0921-8009(02)00089-7
7. Doroftei, M., & Anastasiu, P. (2014). Potential Impacts of Climate Change on Habitats and Their Effects on Invasive Plant Species in Danube Delta Biosphere Reserve, Romania. In: Rannow, S., Neubert, M. (Eds.) Managing Protected Areas in Central and Eastern Europe Under Climate Change, Springer, Dordrecht-Heidelberg-New York-London, 267–279.
8. Doroftei, M., Grigorescu, I., Dumitraşcu, M., & Kucsicsa, G. (2016). Key indicators in assessing of invasive terrestrial plant species in Romanian protected areas. In: Dumitraşcu, M., Grigorescu, I. (Eds.) Invasive terrestrial plant species in the Romanian protected areas. A geographical approach. Editura Academiei Român, Bucureşti, 64–74.
9. Dubyna, D.V., Dziuba, T.P., Iemelianova, S.M., Bahrikova, N.O., Borysova, O.V., Borsukevych, L.M., Vynokurov, D.S., Gapon, S.V., Gapon, Yu.V., Davydov, D.A., Dvoretskyi, T.V., Didukh, Ya.P., Zhmud, O.I., Kozyr, M.S., Konishchuk, V.V., Kuzemko, A.A., Pashkevych, N.A., Ryff, L.E., Solomakha, V.A., Felbaba-Klushyna, L.M., Fitsailo, T.V., Chorna, H.A., Chornei, I.I., Shelyag-Sosonko, Yu.R., & Yakushenko, D.M. (2019). Prodromus roslynnosti Ukrainy [Prodrome of the vegetation of Ukraine]. Naukova dumka, Kyiv, 784 (in Ukrainian).
10. Dubyna, D.V., Shelyag-Sosonko, Yu.R., Zhmud, O.I., Zhmud, M.Ye., Dvoretskyi, T.V., Dziuba, T.P., & Tymoshenko, P.A. (2003). Dunayskyi biosfernyi zapovidnyk. Roslynnyi svit [Danube Biosphere Reserve. The plant world]. Phytosociocenter, Kyiv, 448 (in Ukrainian).
11. Dubyna, D.V., Iemelianova, S.M., Dziuba, T.P., Ustymenko, P.M., Felbaba-Klushyna, L.M., Davydova, A.O., Davydov, D.A., Tymoshenko, P.A., Baranovskyi, B.O., Borsukevych, L.M., Vakarenko, L.P., Vynokurov, D.S., Datsyuk, V.V., Yeremenko, N.S., Ivanko, I.A., Lysohor, L.P., Kazarinova, H.O., Karmyzova, L.O., Makhynya, L.M., Pashkevych, N.A., Fitsaylo, T.V., Shevera, M.V., & Shyryayeva, D.V. (2021). Ruderalna roslynnist Ukrainy: syntaksonomichna riznomanitnist i terytorialna dyferentsiatsiya [Ruderal vegetation of Ukraine: syntaxonomical diversity and territorial differentiation]. Chornomors’k. bot. zh., 17(3), 253–275 doi: 10.32999/ksu1990-553X/2021-17-3-5 (in Ukrainian).
12. Glaser, M., Dullinger, S., Moser, D., Wessely, J., Chytrý, M., Lososová, Z., Axmanová, I., Berg, Ch., Bürger, J., Buholzer, S. Buldrini, F., Chiarucci, A., Follak, S. Küzmič, F., Meyer, S., Pyšek, P., Richner, N., Šilc, U., Steinkellner, S., Wietzke, A., & Essl, F. (2024). Pronounced turnover of vascular plant species in Central European arable fields over 90 years. Agric., Ecosyst. Environ., 361, Article 108798. doi: 10.1016/j.agee.2023.108798
13. Grigorescu, I., Kucsicsa, G., Dumitrașcu, M., & Doroftei, M. (2020). Invasive terrestrial plant species in the Romanian protected areas. A review of the geographical aspects. Folia oecologica, 47(2), 168–177. doi: 10.2478/foecol-2020-0020
14. Hennekens, S.M., & Schamiée, H.J. (2001). TURBOVEG, a comprehensive date base management system for vegetation data. J. Veg. Sci., 12, 589–591.
15. Kolářová, M., Tyšer, L., & Soukup, J. (2014). Weed vegetation of arable land in the Czech Republic: Environmental a management factors determining weed species composition. Biologia, 69. doi: 10.2478/s11756-014-0331-6
16. Kopecký, K., & Hejný, S. (1974). A new approach to the classification of antropogenic plant communities. Vegetatio, 29, 17–20.
17. Kopecký, K., & Hejný, S. (1978). Die Anwendung einer “deduktiven Methode syntaxonomischer Klassifikation” bei der bearbeitung der strassenbegleitenden Pflanzengesellschaften Nordostbohmens [The application of a “deductive method of syntaxonomic classification” in the processing of roadside plant communities in northeast Bohemia]. Vegetatio, 36, 43–51 (in German).
18. Lososová, Z., Chytrý, M., Cimalová, S., Kropáč, Z., Otýpková, Z., Pyšek, P., & Tichý, L. (2004). Weed vegetation of arable land in Central Europe: Gradients of diversity and species composition. J. Veg. Sci., 15, 415–422. doi: 10.1111/j.1654-1103.2004.tb02279.x
19. Loucks, D.P. (2019). Developed River deltas: Are they sustainable? Environ. Res. Lett., 14, 113004. doi: 10.1088/1748-9326/ab4165
20. Metcalfe, H., Bürger, J., von Redwitz, C., Cirujeda, A., Fogliatto, S., Dostatny, D.F. Gerowitt, B., Glemnitz, M., González-Andújar, J.L., Hernández Plaza, E., Izquierdo, J., Kolářová, M., Ņečajeva, J., Petit, S., Pinke, G., Schumacher, M., Ulber, L., Vidotto, F., & Fried G. (2023). The utility of the ‘Arable Weeds and Management in Europe’ database: Challenges and opportunities of combining weed survey data at a European scale. Weed Research, 63, 1–11. doi: 10.1111/wre.12562
21. Mosyakin, S.L., & Bezusko, L.H. (2004). Ohlyad paleobotanichnykh svidchen pro pokhodzhennya ta rozselennya Chenopodiaceae Vent. [Review of paleobotanical evidence of origin and settlement Chenopodiaceae Vent.]. Ukrainian Botanical Journal, 61(3), 80–88. (in Ukrainian).
22. Mosyakin, S.L., & Fedoronchuk, M.M. (1999). Vascular plants of Ukraine. A nomenclatural checklist. M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, 346.
23. Newton, A., Icely, J., Cristina, S., Brito, A., Cardoso, A.C., Colijn, F., Riva, S.D., Gertz, F., Hansen, J.W., Holmer, M. Ivanova, K., Leppäkoski, E., Canu, D.M., Mocenni, Ch., Mudge, S., Murray, N., Pejrup, M., Razinkovas, A., Reizopoulou, S., Pérez-Ruzafa, A., Schernewski, G., Schubert, H., Carr, L., Solidoro, C., Viaroli, P., & Zaldívar, J.-M. (2014). An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuarine, Coastal and Shelf Science, 140, 95–122. doi: 10.1016/j.ecss.2013.05.023
24. Patel, K., Chaurasia, M., Indu T., & Nagar, Sh. (2021). Wetland Conservation and Restoration. In: Sanjeev, Sh., Pardeep, S. (Eds.) Wetlands Conservation: Current Challenges and Future Strategies. John Wiley & Sons Ltd., 272–283. doi: 10.1002/9781119692621.ch13
25. Perillo, G.M.E., Wolanski, E., Cahoon, D.R., & Hopkinson, Ch.S. (2019). Coastal Wetlands: an integrated ecosystem approach. Elsevier: Amsterdam. doi: 10.1016/C2015-0-04343-X
26. Syvitski, J.P.M., & Saito, Y. (2007). Morphodynamics of deltas under the influence of humans. Global and Planetary Change, 57, 261–282.
27. Shelyag-Sosonko, Yu.R. (Ed.) (1999). Bioriznomanitnist Dunayskoho biosfernoho zapovidnyka, zberezhennya ta upravlinnya [Biodiversity of the Danube Biosphere Reserve, conservation and management]. Naukova dumka, Kyiv, 703 (in Ukrainian). (in Ukrainian).
28. Strat, D. (2013). Human induced alterations in plant biodiversity of Sărăturile strand plain – Danube Delta. AOUG, 3, 348–354.
29. Šuvada, R. (Ed.) (2023). Katalog biotopov Slovenska. (Druhe, rozširene vydanie) [Catalog of biotopes of Slovakia. (Second, expanded edition)]. Štatna ochrana prirody SR, Banska Bystrica, 511 (in Slovak).
30. Tichý, L. (2002). JUICE, software for vegetation classification. J. Veg. Sci., 13, 451–453.
31. Trifanov, C., Romanescu, G., Tudor, M., Grigoras, I., Doroftei, M., Silviu, C., & Mierla, M. (2018). Anthropisation degree of coastal vegetation areas in Danube Delta biosphere reserve. Journal of Environmental Protection and Ecology, 19, 539–546.
32. Tucker, G.M., Kettunen, M., McConville, A.J., & Cottee-Jones, E. (2010). Valuing and conserving ecosystem services: A scoping case study in the Danube basin. In: Report Prepared for WWF; Institute for European Environmental Policy, London, 89.