Quantitative analysis of the regulatory gene HSF1 of Bemisia tabaci under different temperatures

Keywords: plant pest and quarantine objects іn agricultural production, pest invasion, B-biotype of Bemisia tabaci; biological method of plants protection from pests, regulatory factors, hsf1- heat shock factor., шкідники рослин у сільськогосподарському виробництві, інвазія шкідника, біологічний захист рослин від шкідників, B-біотип білокрилки тютюнової, регуляторні чинники, hsf1 – фактор теплового шоку.

Abstract

Bemisia tabaci (Gennadius) is one of the most important pests in tropical, subtropical and adjacent temperate regions. B. tabaci is a major agricultural pest that is closely watched worldwide. With the widespread application of vegetable greenhouse planting patterns and frequent vegetable and flower transfers, more favorable conditions were created for the occurrence and spread of B. tabaci, making it the major pest in China's agricultural production.

The ability of B-biotype to adapt for new environments is closely related to its tolerance to temperature. Heat shock proteins (HSP s) are the group of proteins produced by cells under the induction of stressors, especially environmental high temperature. Heat shock proteins play an important role in the adaptability of organisms to the environment. This experiment mainly was studied from the heat shock protein of B. tabaci and its regulatory factors (Heat shock factor 1, hsf1). Meanwhile, fluorescence quantitative technology was used to observe the expression of this regulatory factor under different temperature conditions. It is speculated that the HSPs regulatory factor hsf1 is B-biotype B. tabaci and it can induce protection against high temperature stress.

References

1. Wei Jiao, Lu Zhichuang, Wang Ren & Wan Fanghao. (2014). Comparative analysis of the contents of the heat shock protein genes hsp70 and hsp90 in the three cryptic species of the greenhouse whitefly and the whitefly. Acta Entomologica Sinica, 57(6), 647‒655.
2. Luo Chen & Zhang Zhili. (2000). Overview of the research on Bemisia tabaci (Gennadius). Beijing Agricultural Sci-ences, Bemisia tabaci Special, 4‒15.
3. Chu Dong, Zhang Youjun & Wan Fanghao. (2008). Monitoring of Bemisia tabaci biotypes and research on genetic structure. Insect Knowledge, 45(3), 353‒355.
4. Cui Xuhong, Chen Yanhua, Xie Ming & Wan Fanghao. (2017a). Survival characteristics of Bemisia tabaci B-biotype and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) after exposure to adverse temperature conditions. Acta Entomol. Sin., 50(12), 1232‒1238.
5. Cui Xuhong, Xie Ming & Wan Fanghao. (2017b). Changes in expression level of heat shock protein 70 gene in Be-misia tabaci B-biotype (Homoptera: Aleyrodidae) under high temperature stress. Acta Entomol. Sin., 50(11), 1087‒1091.
6. Zhang Ke, Weng Qunfang & Fu Haohao (2014). Research progress of insect heat shock protein 90. Biotechnology Bulletin, 02, 15‒23.
7. Huang LiHua, Wang ChenZhu & Kang Le (2009). Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa. Journal of Insect Physiology, 55(11), 279‒285.
8. Zhao Li Ming & Jones, W. A. (2012). Expression of heat shock protein genes in insect stress responses. Invertebrate Survival, 9(1), 93‒101.
9. Binder, R. J. (2014). Functions of heat shock proteins in pathways of the innate and adaptive immune system, 193(12), 5765‒5771.
10. Chandrasekhar, K., Dileep, A., Ester Lebonah, D., & Pramoda Kumari, J. (2014). A short review on proteomics and its applications. International Letters of Natural Sciences, 17, 77‒84.
11. Mogk, A., Deuerling, E., Vorderwulerwulbecke, S., Vierling, E. & Bukau, B. (2003). Small heat shock proteins, ClpB and DnaK system form a functional triade in reversing protein aggregation. Molecular Microbiology, 50(2), 585‒595.
12. Sangster, T. A. & Queitsch, C. (2005). The HSP90 chaperone complex an emerging force in plant development and phenotypic plasticity. Current Opinion in Plant Biology, 8(1), 86‒92.
13. Bob, W.G., & Buchannan, B. (2000). Biochemistry and molecular biology of plants. USA, ASPB 983‒987.
14. Srensen, J.G., Kristensen, T.N. & Loeschcke, V. (2003). The evolutionary and ecological role of heat shock pro-teins. Ecol. Lett., 6, 1025‒1037.
15. Liu Qiu Ning, Zhu Bao Jian, Dai Li Shang, Fu Wei Wei, Lin Kun Zhang & Liu Chao Liang (2013). Overexpression of small heat shock protein 21 protects the Chinese oak silkworm Antheraea pernyi against thermal stress. Insect Physiology, 59(8), 848‒854.
16. Liu Zhao Hua, Yao Peng Bo, Guo Xing Qi & Xua Bao Hua (2014). Two small heat shock protein genes in Apis cerana: characterization, regulation, and developmental expression. Gene, 545(2), 205‒214.
17. Lu Ming Xing, Hua Jin, Cui Ya Dong & Du Yu Zhou (2014). Five small heat shock protein genes from Chilo sup-pressalis: characteristics of gene, genomic organization, structural analysis, and transcription profiles. Cell Stress and Chaper-on, 19(1), 91‒104.
18. Jacques, R. (2003). Evolution of heat shock protein and immunity. Developmental and Comparative Immunology, 27, 449‒464.
19. Christine, Q., Todd, A. S. & Susan, L. (2002). Hsp90 as a capacitor of phenotypic variation. Nature, 417, 618‒625.
20. Evgen’ev, M.B., Zatsepina, O.G., Garbuz, D., Lerman, D.N., Velikodvorskaya, V., Zelentsova, E. & Feder, M.E. (2004). Evolution and arrangement of the hsp70 gene cluster in two closely related species of the virilis group of Drosophila. Chromosoma, 113(5), 223‒232.
21. Zhang Tianhao & Zhang Xianhong (2019). Research progress of insect heat shock proteins. Journal of Shanxi Ag-ricultural University (Natural Science Edition), 39(1), 035.
22. King, A. M. & MacRae, T. H. (2015). Insect heat shock proteins during stress and diapause. Annual Review of En-tomology, 60, 59‒75.
23. Wettstein, G., Bellaye, P. S., Micheau, O. & Bonniaud, P. (2012). Small heat shock proteins and the cytoskeleton: An essential interplay for cell integrity? The International Journal of Biochemistry & Cell Biology, 44(10), 1680‒1686.
24. Zhang Zhenyu, Chen Junjie & Yu Rong (2012). Research progress on heat shock factor 1 and its relationship with heat shock protein expression. Chinese Journal of Burns, Wanfang Data, 28(1), 78‒80.
25. Chen Xien & Zhang Yalin (2015). Identification of multiple small heat-shock protein genes in Plutella xylostella (L.) and their expression profiles in response to abiotic stresses. Cell Stress and Chaperones, 20(1), 23‒35.
26. Snoeckx, L.H., Cornelussen, R.N., Van Nieuwenhoven, F.A., Reneman, R.S. & Van der Vusse, G.J. (2001). Heat shock proteins and cardiovascular pathophysiology. Physiological Reviews, 81(4), 1461‒1497.
27. Maaroufi, H. & Tanguay, R.M. (2013). Analysis and phylogeny of small heat shock proteins from marine viruses and their cyanobacteria host. PLoS One 8: e81207.
28. Morrow, G. & Tanguay, R. M. (2015). Drosophila small heat shock proteins: an update on their features and func-tions. In: Tanguay R.M., Hightower L.E. (eds). The big book on small heat shock proteins. Springer International Publishing, Cham, 579‒606.
29. Moutaoufik, M. T., Morrow, G., Finet, S. & Tanguay, R. M. (2017a). Effect of N-terminal region of nuclear Drosophi-la melanogaster small heat shock protein DmHsp27 on function and quaternary structure. PLoS One 12: e0177821.
30. Moutaoufik, M.T., Morrow, G., Maaroufi, H., Férard, C., Finet, S. & Tanguay, R. M. (2017b). Oligomerization and chaperone-like activity of Drosophila melanogaster small heat shock protein DmHsp27 and three arginine mutants in the alpha-crystallin domain. Cell Stress Chaperones 22, 455‒466.
31. Auluck, P. K., Chan, H. Y., Trojanowski, J. Q. & Bonini, N. M. (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s diseas. Science, 295(5556), 865‒868.
32. Nakano, K. & Iwama, G. K. (2002). The 70-kDa heat shock protein response in two intertidal sculpins, Oligocottus maculosus and O. snyderi: relationship of hsp70 and thermal tolerance. Comparative Biochemistry and Physiology, 133(1), 79‒94.
33. Kroeger, P. E., Sarge, K. D. & Morimoto, R. I. (1993). Mouse heat shock transcription factors 1 and 2 prefer a tri-meric binding site but interact differently with the HSP70 heat shock element. Molecular and Cellular Biology, 20, 1810‒1813.
34. Wu, C. (1995). Heat shock transcription factors: structure and regulation. Annual Review of Cell and Developmental Biology, 11, 441‒469.
35. Pirkkala, L., Nykanen, P. & Sistonen, L. (2001). Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. The FASEB Journal, 15, 1118‒1131.
36. Shen, Binbin & Ren, Shunxiang (2007). The influence of several ecological factors on Bemisia tabaci population. Anhui Agricultural Sciences, 35(3), 758‒759.
37. Lü Zhi Chuang & Wan Fang Hao (2011). Using double-stranded RNA to explore the role of heat shock protein genes in heat tolerance in Bemisia tabaci (Gennadius). Journal of Experimental Biology, 214(5): 764‒769.
38. Yu, Guolong (2003). Application of real-time fluorescent quantitative PCR in medical genetics. Foreign Medical Ge-netics Volume, 26 (3): 125-130.
39. Chen Suhong, Zhang Minli, Mou Hang, Guan Wei, Li Lu & Wang Shengqi (2003). Detection of Bacillus anthracis by real-time fluorescent quantitative PCR method. People's Liberation Army Medical Journal, 28(3), 268‒270.
40. Wang Depeng, Li Hongge, Guo Songchang, Yang Jie, Qi Delin & Zhao Xinquan (2007). Tissue-specific expression of HIF-1α gene in Qinghai domestic yak. Anhui Agricultural Sciences, 35(29), 9173‒9175.
41. Li Songqing, Ye Langguang, Li Xuyu & Deng Shuxuan (2009). Design principles and applications of real-time quan-titative PCR experiments. Animal Husbandry and Feed Science, 30(1), 43‒44.
42. Abdel-Raheem, M., Reyad, N.F. & Al-Shuraym, L. (2016). Evaluation of some isolates of Entomopathogenic fungi on some insect pests infesting potato crop in Egypt. International journal of chemtech research, 9, 479‒485.
43. Alavo, T.B. (2015). The insect pathogenic fungus Verticillium lecanii (Zimm.) Viegas and its use for pests control: A review. Journal of experimental biology and agricultural sciences, 3, 337‒345.
44. Benz, G. (2015). Environment In Fuuxa and Tanada. Eds. Epizootiology of Insect Diseases. Wiley and Sons, New York, 177‒214.
45. Coppola, V., Coppol,a M., Rocco, M., Digilio, M. C., Dambrosio, C., Renzone, G. & Corrado, G. (2013). Tran-scriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC genomics, 14, 515.
46. Dogan, Y. O., Hazir, S., Yildiz, A., Butt, T. M. & Cakmak, I. (2017). Evaluation of entomopathogenic fungi for the control of Tetranychus urticae (Acari: Tetranychidae) and the effect of Metarhizium brunneum on the predatory mites (Acari: Phytoseiidae). Biological Control, 111, 6‒12.
47. Dorta, B., Bosch, A. J., Arcas, A. & Ertola, R. J. (2012). High level of sporulation of Metarhizium anisopliae in medi-um containing by-products. Applied Microbiology and Biotechnology, 33, 712‒715.
48. Farooq, M. & Freed, S. (2018). Insecticidal activity of toxic crude proteins secreted by entomopathogenic fungi against Musca domestica L. (Diptera: Muscidae). Kuwait Journal of Science, 45.
49. Feng Yuntao, Wu Qingjun, Wang Shaoli, Chang Xiaoli, Xie Wen, Xu Baoyun & Zhang Youjun (2010). Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B biotype Bemisia tabaci (Hemiptera: Aleyrodi-dae). Pest Managament Science, 66, 313‒318.
50. Ferron, P. (2015). Fungal control ‒ Comprehensive Insect Physiology, Biochemistry and Pharmacology. III. (Eds.) G.A. Kerkut and Gilbert, ed. Pergamon Press, New York, 313‒346.
51. Fontes, F.V.H.M., Colombo, C. A. & Lourencao, A. L. (2012). Structure of genetic diversity of Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae) populations in Brazilian crops and locations. Journal of Agricultural Science, 69, 47‒53.
52. Foolad, M. R. & Panthee, D. R. (2012). Marker assisted selection in tomato breeding. Critical Reviews in Plant Sci-ences, 31, 93‒123.
53. Freed, S., Jin, F.L. & Ren, S.X. (2011). Phylogenetics of entomopathogenic fungi isolated from the soils of different ecosystems. Pakistan Journal of Zoology, 43, 417‒425.
54. Gillespie, A.T. & Crawford, E. (2015). Effect of water activity on conidial germination and mycelial growth of Beau-veria bassiana, Metarhizium anisopliae, Paecilomyces spp. and Verticiliium lecanii. In Fundamental and Applied Aspects of Invertebrate Pathology, 55. Samson, R. A, Vlak, J. M. & Peters, D. Wageningen: Society of Invertebrate Pathology, 254.
55. Glare, T.R. & Inwood, A. (2014). Morphological and genetic characterization of Beauveria spp. From New Zealand. Mycological Research, 102, 250‒256.
56. Dai Tian Mei, Lü Zhi Chuang, Liu Wan Xue & Wan Fang Hao (2017). Selection and validation of reference genes for qRT-PCR analysis during biological invasions: the therability of Bemisia tabaci MED. PLoS ONE 12: e0173821.
57. Goettel, M.S., Eilenberg, J. & Glare, T. (2015). Entomopathogenic fungi and their role in regulation of insect popula-tions. In: Comprehensive Molecular Insect Science, (Eds. L.I., Gilbert, K., Iatrou & S.S., Gill), Amsterdam, 361‒405.
58. Hanan, A., Basit, A., Nazir, T., Majeed, M.Z. & Qiu, D. (2020). Anti-insect activity of a partially purified protein de-rived from the entomopathogenic fungus Lecanicillium lecanii (Zimmermann) and its putative role in a tomato defense mecha-nism against green peach aphid. Journal of Invertebrate Pathology, 170, 107‒282.
59. Hanan, A., Nazir, T., Basit, A., Ahmad, S. & Qiu, D. (2020). Potential of Lecanicillium lecanii (Zimm.) as a Microbial Control Agent for Green Peach Aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Pakistan Journal of Zoology, 52(1).
60. Hayet, M., Sundararaj, R. & Vimala, D. (2018). The genus Encarsia Forester (Hymenoptera: Aphelinidae) parasi-toids of whiteflies (Hemiptera: Aleyrodidae) in India. Journal of Insect Systematics, 2, 44‒90.
61. Holder, D. J. & Keyhani, N. O. (2015). Adhesion of the entomopathogenic fungus Beauveria bassiana to substrata. Applied & Environmental Microbiology, 71, 5260‒5266.
62. Hoog, G. S. & Rao, V. (2015). Some new hyphomycetes. Persoonia, 8, 207‒212.
63. Jaber, L. R. & Ownley, B. H. (2018). Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological Control, 116, 36‒45.
64. Javed, K. & Qiu, D. (2020). Protein Elicitor PeBL1 of Brevibacillus laterosporus Enhances Resistance against Myzus persicae in Tomato. Pathogens, 9: 1-57.
65. Kirkland, B.H., Westwood, G.S. & Keyhani, N.O. (2014). Pathogenicity of entomopathogenic fungi Beauveria bassi-ana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus and Ixodes scapu-laris. Journal of Medical Entomology, 41, 705‒711.
66. Koppert, B. V. (2015). Mycotal Verticillium lecanii-m. http://www.koppert.com.
67. Latch, G. C. & Fallon, R. F. (2013). Studies on the use of Metarhizium anisopliae to control Oryctes rhinoceros. En-tomophaga, 21, 39‒48.
68. Lovera, A., Belaich, M., Villamizar, L., Patarroyo, M. A. & Barrera, G. (2020). Enhanced virulence of Beauveria bas-siana against Diatraea saccharalis using a soluble recombinant enzyme with endo-and exochitinase activity. Biological Control, 104‒211.
69. Macleod, D. M. (2014). Investigations on the genera Beauveria Vuill, and Tritirachium Limber. Canadian Journal of Botany, 32, 818‒890.
70. Majeed, M.Z., Fiaz, M., Ma, C.S. & Afzal, M. (2017). Entomopathogenicity of Three Muscardine Fungi, Beauveria bassiana, Isaria fumosorosea and Metarhizium anisopliae, against the Asian Citrus Psyllid, Diaphorina citri Kuwayama (Hemip-tera: Psyllidae). Egypt. Journal of Biological Pest Control, 27, 211‒215.
71. Mora, M.E., Castilho, A.M.C. & Fraga, M.E. (2017). Classification and infection mechanism of Entomopathogenic fungi. Arquivos do Instituto Biológico, 84.
72. Mustu, M., Demirci, F., Kaydan, M.B. & Ülgentürk, S. (2015). Laboratory assay of the effectiveness of the ento-mopathogenic fungus Isaria farinosa (Holmsk.) Fries Sordariomycetes Hypocreales against the vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae), even under the use of fungicides. International Journal of Pest Management, 61, 264‒271.
73. Nazir, T., Basit, A., Hanan, A., Majeed, M. & Qiu, D. (2019). In Vitro Pathogenicity of some entomopathogenic fun-gal strains against green peach aphid Myzus persicae Homoptera: Aphididae. Agronomy, 9, 7.
74. Nazir, T., Hanan, A., Basit, A., Majeed, M. Z., Anwar, T., Nawaz, I. & Qiu, D. (2020). Putative Role of a Yet Unchar-acterized Protein Elicitor PeBb1 Derived from Beauveria bassiana ARSEF 2860 Strain against Myzus persicae (Homoptera: Aphididae) in Brassica rapa ssp. pekinensis. Pathogens, 9, 111.
75. Rehner, S.A. & Buckley, E. (2015). A Beauveria phylogeny inferred from nuclear ITS and EF1-αsequences: evi-dence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97, 84‒98.
76. Ruiu, L. (2018). Microbial biopesticides in agroecosystems. Agronomy, 11, 235.
77. Sánchez-rodríguez, A. R., Raya-díaz, S., Zamarreño, A. M., García-mina, J. M., Delcampillo, M. C. & Quesa-moraga, E. (2018). An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biological Control, 90‒102.
78. Sánchez-rodríguez, A.R., Barrón, V., Delcampillo, M.C. & Quesada-moraga, E. (2016). The entomopathogenic fun-gus Metarhizium brunneum: a tool for alleviating Fe chlorosis. Plant and soil, 2, 295‒310.
79. Saranraj, P. & Jayaprakash, A. (2017). Agrobeneficial Entomopathogenic Fungi-Beauveria bassiana: A Review. In-do-Asian Journal of Multidisciplinary Research, 3, 1051‒1087.
80. Verma, A K. & Deepthi, S. (2016). Abiotic stress and crop improvement: Current scenario. Advances in Plants and Agriculture Research, 4, 14950.
81. Xu Hong-Xing, Qian Li-Xin, Wang Xing-Wei, Shao Ruo-Xuan, Hong Yue, Liu Shu-Sheng & Wang Xiao-Wei (2019). A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proceedings of the National Academy of Sciences, 2, 490‒495.
82. Yun, H.G., Kim, D.J., Gwak, W.S., Shin, T.Y. & Woo, S.D. (2017). Entomopathogenic fungi as dual control agents against both the pest Myzus persicae and phytopathogen Botrytis cinerea. Mycobiology, 45, 192‒198.
83. Boulant, S., Stanifer, M. & Lozach, P.Y. (2015). Dynamics of virus-receptor interactions in virus binding, signaling and endocytosis. Viruses, 7, 2794‒2815.
84. Brodsky, F.M. (2012). Diversity of clathrin function: new tricks for an old protein. Annu. Rev. Cell Dev. Biol., 28, 309‒336.
85. Brown, JK., Zerbini, F. M., Navas-Castillo, J., Moriones, E., Ramos-Sobrinho, R., Silva, J. C. F., Fiallo-Olivé, E., Briddon, R.W., Hernández-Zepeda, C., & Idris, A. (2015). Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch. Virol., 160, 1593‒1619.
86. Yao Chi, Pan Li Long, Bouvaine S., Fan Yun Yun., Liu Yin Quan, Liu Shu Sheng, Seal, S. & Wang Xiao Wei. (2019). Differential transmission of Sri Lankan cassava mosaic virus by three cryptic species of the whitefly Bemisia tabaci complex. Virology, 540, 141‒149.
87. Czosnek, H., Hariton-Shalev, A., Sobol, I., Gorovits, R. & Ghanim, M. (2017). The incredible journey of be-gomoviruses in their whitefly vector. Viruses, 9, 273.
88. Fiallo-Olivé, E., Pan, L.L., Liu, S. S. & Navas-Castillo, J. (2020). Transmission of begomoviruses and other whitefly-borne viruses: dependence on the vector species. Phytopathol, 110, 10‒17.
89. Geng Liang, Qian Li-Xin, Shao Ruo-Xuan, Liu Yin-Quan, Liu Shu-Sheng & Wang Xiao-Wei (2018). Transcriptome profiling of whitefly guts in response to Tomato yellow leaf curl virus infection. Virology J., 15, 14.
90. Ghanim, M. (2014). A review of the mechanisms and components that determine the transmission efficiency of To-mato yellow leaf curl virus (Geminiviridae; Begomovirus) by its whitefly vector. Virus Res., 186, 47‒54.
91. Gianesello, L., Priante, G., Ceol, M., Radu, C.M., Saleem, M.A., Simioni, P., Terrin, L., Anglani, F. & Prete, D.D. (2017). Albumin uptake in human podocytes: a possible role for the cubilin-amnionless (Cubam) complex. Sci. Rep., 7, 13705.
92. Cohen, A., & Patana, R. (1982). Ontogenetic and stress-related changes in hemolymph chemistry of beet armyworm. Comparative Biochemistry and Physiology ‒ Part A, 71, 193‒198.
93. De Barro, P. J., Bourne, A., Khan, S. A. & Brancatini, V. L. (2006). Host plant and biotype density interactions-their role in the establishment of the invasive B biotype of Bemisia tabaci. Biological Invasions, 8, 287‒294.
94. Dunbar, H. E., Wilson, A. C. C., Ferguson, R. & Moran, N. A. (2007). Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. Plos Biology, 5, 1006‒1016.
95. Feder, M. E. & Krebs, R. A. (1997). Ecological and evolutionary physiology of heat-shock proteins and the stress response in: complementary insights from genetic engineering and natural variation. In: Bijlsma, R., Loeschck,e V. eds. Envi-ronmental Stress, Adaptation and Evolution. Birkhauser Basel, 155‒173.
96. Franck, E., Madsen, O., Van, R. T., Ricard, G., Huynen, M. A. & De, J. W. W. (2004). Evolutionary diversity of ver-tebrate small heat shock proteins. J. Mol. Evol., 59, 792‒805.
97. Hu Tao, Huang ChangJun, He Yuting, Castillo-González C., Gui Xiaojian, Wang Yaqin, Zhang Xiuren & Zhou Xueping (2019). βC1 protein encoded in geminivirus satellite concertedly targets MKK2 and MPK4 to counter host defense. PLoS Pathog, 15, e1007728.
98. Kaksonen, M. & Roux, A. (2018). Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol., 19, 313‒326.
99. Kanakala, S. & Ghanim, M. (2019). Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS One, 14(3), e0213946.
100. Lei Teng, Zhao Jing, Wang HuaLing, Liu Yin Quan & Liu Shu Sheng (2020). Impact of a novel Rickettsia symbiont on the life history and virus transmission capacity of its host whitefly (Bemisia tabaci). Insect science, 28(2), 377‒391.
Published
2020-11-30
How to Cite
Liu, S., Yu, H., & Vlasenko, V. (2020). Quantitative analysis of the regulatory gene HSF1 of Bemisia tabaci under different temperatures. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 41(3), 49-56. https://doi.org/10.32782/agrobio.2020.3.6