A review of rapid pesticide residues determination in vegetables and fruits

Keywords: pesticide residues, rapid detection techniques, cross-fusion technology, fruits and vegetables.



With the increasing demand of production, pesticides have been widely used in fruit and vegetable yield. Pesticides are used to kill insects, fungi and other organisms that harm the growth of crops in order to ensure and promote the growth of crops. In particular, pesticides are used to control diseases and insects and regulate plant growth and weeding. From the point at this stage, the use of pesticides in agricultural production is inevitable, and the corresponding, also in rapid increase in the amount of pesticide, pesticide residue problem is along with the production and extensive use of pesticides, pesticide, especially the organic pesticide used in great quantities, cause serious problems of pesticide pollution, a serious threat to human health. That is the abuse of pesticides does harm for environment and human health, particularly in the bioaccumulation effect of pesticide residues on human body, attracting more and more attention from scientists. Therefore, it’s imperative to develop high sensitivity, high selectivity, simple, rapid and low-cost methods for pesticide residues detection and analysis. The traditional methods of pesticide residue analysis mainly include gas chromatography high performance liquid chromatography, chromatography-mass spectrometry, etc. These methods have been widely used in pesticide residue detection, and a series of important achievements have been made. Although with high detection sensitivity, these methods have some problems such as complicated sample pretreatment, expensive equipment, time-consuming analysis, and the need for specialized instrument operators and so on, which cannot meet the requirements of rapid and real-time field detection of pesticide residues. Therefore, researchers in various fields have carried out and strengthened the research on rapid detection technology of pesticide residues, seeking to develop convenient, sensitive, accurate and stable new pesticide residue detection technology. In this paper, we mainly reviewed the rapid detection technologies of pesticide in fresh fruits and vegetables in recent years, including new chromatographic analysis, enzyme inhibition, fluorescence sensor, spectrophotometric and biosensor detection technology, and analyzed the development status, advantages, and disadvantages of each method, as well as the development prospect of rapid detection technology in the future.


1. Caria, G., Proix, N., Mougin, C., Ouddane, B., & Net, S. (2021). A new, simple, efficient and robust multi-residue method based on pressurised-liquid extraction of agricultural soils to analyze pesticides by liquid chromatography coupled with a high resolution quadrupole time-of-flight mass spectrometer. International Journal of Environmental Analytical Chemistry. doi: 10.1080/03067319.2021.1889531
2. Loganathan, S., & Murugan, T. (2017). Pesticide-Mediated Toxicity in Modern Agricultural Practices. In Sustainable Agriculture towards Food Security, Springer, 359‒373.
3. Calaf, G. M., Bleak, T. C., & Roy, D. (2021). Signs of carcinogenicity induced by parathion, malathion, and estrogen in human breast epithelial cells. Oncology Reports, 45(4). doi: 10.3892/or.2021.7975
4. Freire, C., & Koifman, S. J. N. (2012). Pesticide exposure and Parkinson's disease: epidemiological evidence of association, 33(5), 947‒971.
5. Li, Z. H., Sun, J. T., & Zhu, L. Z. (2021). Organophosphorus pesticides in greenhouse and open-field soils across China: Distribution characteristic, polluted pathway and health risk. Science of the Total Environment, 765. doi: 10.1016/j.scitotenv.2020.142757
6. Steenland, K., Jenkins, B., Ames, R. G., O'Malley, M., Chrislip, D., & Russo, J. J. A. J. o. P. H. (1994). Chronic neurological sequelae to organophosphate pesticide poisoning. 84(5), 731‒736.
7. Upadhayay, J., Rana, M., Juyal, V., Bisht, S. S., Joshi, R. J. P. i. C. P. P., & Action, B. (2020). Impact of Pesticide Exposure and Associated Health Effects, 69‒88.
8. Yu, H., Sun, H. Z., Wang, X. R., Liang, Y. B., Guo, M. M., Yu, J. W., & Zhou, L. (2021). Residue behavior and safety evaluation of pymetrozine in tea. Journal of the Science of Food and Agriculture. doi: 10.1002/jsfa.11047
9. Wu, P. L., Wang, P. S., Gu, M. Y., Xue, J., & Wu, X. L. (2021). Human health risk assessment of pesticide residues in honeysuckle samples from different planting bases in China. Science of the Total Environment, 759. doi: 10.1016/j.scitotenv.2020.142747
10. Golge, O. (2021). Validation of Quick Polar Pesticides (QuPPe) Method for Determination of Eight Polar Pesticides in Cherries by LC-MS/MS. Food Analytical Methods. doi: 10.1007/s12161-021-01966-w
11. Ninga, E., Sapozhnikova, Y., Lehotay, S. J., Lightfield, A. R., & Monteiro, S. H. (2021). High-Throughput Mega-Method for the Analysis of Pesticides, Veterinary Drugs, and Environmental Contaminants by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry and Robotic Mini-Solid-Phase Extraction Cleanup plus Low-Pressure Gas Chromatography-Tandem Mass Spectrometry, Part 1: Beef. Journal of Agricultural and Food Chemistry, 69(4), 1159‒1168. doi: 10.1021/acs.jafc.0c00710
12. Rojas, C., Aranda, J. F., Jaramillo, E. P., Losilla, I., Tripaldi, P., Duchowicz, P. R., & Castro, E. A. (2021). Foodinformatic prediction of the retention time of pesticide residues detected in fruits and vegetables using UHPLC/ESI Q-Orbitrap. Food Chemistry, 342. doi: 10.1016/j.foodchem.2020.128354
13. Saegusa, H., Nomura, H., Takao, M., Hamaguchi, T., Yoshida, M., & Kodama, Y. (2021). Development and validation of an analysis method for pesticide residues by gas chromatography-tandem mass spectrometry in Daikenchuto. Journal of Natural Medicines, 75(2), 344‒360. doi: 10.1007/s11418-020-01473-y
14. Hao, N., & Wang, K. (2016). Recent development of electrochemiluminescence sensors for food analysis. Analytical and Bioanalytical Chemistry, 408(25), 7035‒7048. doi: 10.1007/s00216-016-9548-2
15. He, Y. H., Zhao, F. N., Zhang, C., Abd Ei-Aty, A. M., Baranenko, D. A., Hacimuftuoglu, A., & She, Y. X. (2019). Assessment of magnetic core-shell mesoporous molecularly imprinted polymers for selective recognition of triazoles residual levels in cucumber. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 1132. doi: 10.1016/j.jchromb.2019.121811
16. Lei, S., Li, X. H., Wang, Y., Sun, L. R., Liu, H., & Zhao, L. S. (2018). Synthesis of magnetic multiwall carbon nanotubes for enantioseparation of three pesticide residues in fruits and vegetables by chiral liquid chromatography. Chirality, 30(12), 1321‒1329. doi:10.1002/chir.23029
17. Lu, J. X., Sun, Y. F., Waterhouse, G. I. N., & Xu, Z. X. (2018). A voltammetric sensor based on the use of reduced graphene oxide and hollow gold nanoparticles for the quantification of methyl parathion and parathion in agricultural products. Advances in Polymer Technology, 37(8), 3629‒3638. doi: 10.1002/adv.22147
18. Wu, S., Li, D. D., Gao, Z. M., & Wang, J. M. (2017). Controlled etching of gold nanorods by the Au(III)-CTAB complex, and its application to semi-quantitative visual determination of organophosphorus pesticides. Microchimica Acta, 184(11), 4383‒4391. doi: 10.1007/s00604-017-2468-9
19. Hao, C. Y., Nguyen, B., Zhao, X. M., Chen, E., & Yang, P. (2010). Determination of Residual Carbamate, Organophosphate, and Phenyl Urea Pesticides in Drinking and Surface Water by High-Performance Liquid Chromatography/Tandem Mass Spectrometry. Journal of Aoac International, 93(2), 400‒410.
20. Tong, H. F., Tong, Y. L., Xue, J., Liu, D. J., & Wu, X. B. (2014). Multi-residual Pesticide Monitoring in Commercial Chinese Herbal Medicines by Gas Chromatography-Triple Quadrupole Tandem Mass Spectrometry. Food Analytical Methods, 7(1), 135‒145. doi:10.1007/s12161-013-9609-5
21. Wu, Y., Kang, Q. H., Gao, K. Y., & Li, Z. B. (2009). Determination of 44 Organophosphorous Pesticides Residual in Chestnut Using Solid Phase Extraction and On-line Gel Permeation Chromatography/Gas Chromatography-Mass Spectrometry. Chinese Journal of Analytical Chemistry, 37(5), 753‒757.
22. Khan, Z., Kamble, N., Bhongale, A., Girme, M., Chauhan, V. B., & Banerjee, K. J. F. c. (2018). Analysis of pesticide residues in tuber crops using pressurised liquid extraction and gas chromatography-tandem mass spectrometry, 241, 250‒257.
23. Gumpu, M. B., Nesakumar, N., Nagarajan, S., Ramanujam, S., Krishnan, U. M., Babu, K. J., & Rayappan, J. B. B. (2017). Design and Development of Acetylthiocholine Electrochemical Biosensor Based on Zinc Oxide-Cerium Oxide Nanohybrid Modified Platinum Electrode. Bulletin of Environmental Contamination and Toxicology, 98(5), 662‒671. doi: 10.1007/s00128-017-2045-2
24. Li, Y. Q., Li, Y. Z., Yu, X. L., & Sun, Y. (2019). Electrochemical Determination of Carbofuran in Tomatoes by a Concanavalin A (Con A) Polydopamine (PDA)-Reduced Graphene Oxide (RGO)-Gold Nanoparticle (GNP) Glassy Carbon Electrode (GCE) with Immobilized Acetylcholinesterase (AChE). Analytical Letters, 52(14), 2283‒2299. doi:10.1080/00032719.2019.1609490
25. Badawy, S. M. (2021). Optimization of reaction time for detection of organophosphorus pesticides by enzymatic inhibition assay and mathematical modeling of enzyme inhibition. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 56(2), 142‒149. doi: 10.1080/03601234.2020.1853455
26. Singh, A. P., Balayan, S., Hooda, V., Sarin, R. K., & Chauhan, N. (2020). Nano-interface driven electrochemical sensor for pesticides detection based on the acetylcholinesterase enzyme inhibition. International Journal of Biological Macromolecules, 164, 3943‒3952. doi: 10.1016/j.ijbiomac.2020.08.215
27. Albendin, M. G., Manuel-Vez, M., & Arellano, J. M. (2021). In vivo cholinesterase sensitivity of gilthead seabream (Sparus aurata) exposed to organophosphate compounds: Influence of biological factors. Ecological Indicators, 121. doi: 10.1016/j.ecolind.2020.107176
28. Lin, X. F., Yu, Q. R., Yang, W., He, C. X., Zhou, Y., Duan, N., & Wu, S. J. (2021). Double-enzymes-mediated fluorescent assay for sensitive determination of organophosphorus pesticides based on the quenching of upconversion nanoparticles by Fe3+. Food Chemistry, 345. doi: 10.1016/j.foodchem.2020.128809
29. Yang, X.-m., Gu, Y.-p., Wu, S.-j., Feng, L., & Xie, F. (2019). Research on a rapid detection method of pesticide residues in milk by enzyme inhibition. Paper presented at the E3S Web of Conferences.
30. Wu, Y., Jiao, L., Xu, W. Q., Gu, W. L., Zhu, C. Z., Du, D., & Lin, Y. H. (2019). Polydopamine-Capped Bimetallic AuPt Hydrogels Enable Robust Biosensor for Organophosphorus Pesticide Detection. Small, 15(17). doi: 10.1002/smll.201900632
31. Arduini, F., Cinti, S., Caratelli, V., Amendola, L., Palleschi, G., & Moscone, D. (2019). Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosensors & Bioelectronics, 126, 346‒354. doi: 10.1016/j.bios.2018.10.014
32. Pundir, C. S., Malik, A., & Preety. (2019). Bio-sensing of organophosphorus pesticides: A review. Biosensors & Bioelectronics, 140, 5‒17. doi: 10.1016/j.bios.2019.111348
33. Sgobbi, L. F., & Machado, S. A. S. (2018). Functionalized polyacrylamide as an acetylcholinesterase-inspired biomimetic device for electrochemical sensing of organophosphorus pesticides. Biosensors & Bioelectronics, 100, 290‒297. doi: 10.1016/j.bios.2017.09.019
34. Ouyang, Q., Wang, L., Ahmad, W., Rong, Y. W., Li, H. H., Hu, Y. Q., & Chen, Q. S. (2021). A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Food Chemistry, 349. doi: 10.1016/j.foodchem.2021.129157
35. Wang, S., Chen, H. Y., Xie, H. L., Wei, L. N., Xu, L., Zhang, L., & Fu, H. Y. (2021). A novel thioctic acid-carbon dots fluorescence sensor for the detection of Hg2+ and thiophanate methyl via S-Hg affinity. Food Chemistry, 346. doi: 10.1016/j.foodchem.2020.128923
36. Chen, Y., Zhu, Y. Y., Zhao, Y. H., & Wang, J. (2021). Fluorescent and colorimetric dual-response sensor based on copper (II)-decorated graphitic carbon nitride nanosheets for detection of toxic organophosphorus. Food Chemistry, 345. doi: 10.1016/j.foodchem.2020.128560
37. Han, Y., He, X., Yang, W. X., Luo, X. L., Yu, Y., Tang, W. Z., & Li, Z. H. (2021). Ratiometric fluorescent sensing carbendazim in fruits and vegetables via its innate fluorescence coupling with UiO-67. Food Chemistry, 345. doi: 10.1016/j.foodchem.2020.128839
38. Liang, N. N., Hu, X. T., Li, W. T., Mwakosya, A. W., Guo, Z., Xu, Y. W., & Shi, J. Y. (2021). Fluorescence and colorimetric dual-mode sensor for visual detection of malathion in cabbage based on carbon quantum dots and gold nanoparticles. Food Chemistry, 343. doi: 10.1016/j.foodchem.2020.128494
39. Zhou, Y.-z., Wang, X., & Liu, B.-l. J. S. (2018). IProgress of functionalized nano probe based on aptamer in food safety and detection. ndustry, T. o. F., (10), 62.
40. Li, H., Sun, C., Vijayaraghavan, R., Zhou, F., Zhang, X., & MacFarlane, D. R. J. C. (2016). Long lifetime photoluminescence in N, S co-doped carbon quantum dots from an ionic liquid and their applications in ultrasensitive detection of pesticides, 104, 33‒39.
41. Hou, J., Dong, J., Zhu, H., Teng, X., Ai, S., & Mang, M. J. B. (2015). A simple and sensitive fluorescent sensor for methyl parathion based on l-tyrosine methyl ester functionalized carbon dots, Bioelectronics, 68, 20‒26.
42. Hou, J. Y., Dong, J., Zhu, H. S., Teng, X., Ai, S. Y., & Mang, M. L. (2015). A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots. Biosensors & Bioelectronics, 68, 20‒26. doi: 10.1016/j.bios.2014.12.037
43. Long, Q., Li, H. T., Zhang, Y. Y., & Yao, S. Z. (2015). Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides. Biosensors & Bioelectronics, 68, 168‒174. doi: 10.1016/j.bios.2014.12.046
44. Meng, X. W., Wei, J. F., Ren, X. L., Ren, J., & Tang, F. Q. (2013). A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosensors & Bioelectronics, 47, 402‒407. doi: 10.1016/j.bios.2013.03.053
45. Upadhyayula, V. K. K. (2012). Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review. Analytica Chimica Acta, 715, 1‒18. doi: 10.1016/j.aca.2011.12.008
46. Luo, Q., Lai, J., Qiu, P., Wang, X. J. S., & Chemical, A. B. (2018). An ultrasensitive fluorescent sensor for organophosphorus pesticides detection based on RB-Ag/Au bimetallic nanoparticles, 263, 517‒523.
47. Kostelnik, A., & Pohanka, M. (2018). Superficially Bound Acetylcholinesterase Based on a Chitosan Matrix for Neurotoxic Compound Assay by a Photographic Technique. Analytical Letters, 51(10), 1622‒1632. doi:10.1080/00032719.2017.1381846
48. Liu, W., Zhang, D. H., Tang, Y. F., Wang, Y. S., Yan, F., Li, Z. H., & Zhou, H. S. (2012). Highly sensitive and selective colorimetric detection of cartap residue in agricultural products. Talanta, 101, 382‒387. doi: 10.1016/j.talanta.2012.09.045
49. Kodir, A., Imawan, C., Permana, I. S., & Handayani, W. (2016). Pesticide colorimetric sensor based on silver nanoparticles modified by L-cysteine. Paper presented at the 2016 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM).
50. Li, X. X., Cui, H. X., & Zeng, Z. H. (2018). A Simple Colorimetric and Fluorescent Sensor to Detect Organophosphate Pesticides Based on Adenosine Triphosphate-Modified Gold Nanoparticles. Sensors, 18(12). doi: 10.3390/s18124302
45. Bettazzi, F., Ingrosso, C., Sfragano, P. S., Pifferi, V., Falciola, L., Curri, M. L., & Palchetti, I. (2021). Gold nanoparticles modified graphene platforms for highly sensitive electrochemical detection of vitamin C in infant food and formulae. Food Chemistry, 344. doi: 10.1016/j.foodchem.2020.128692
51. Hua, Z., Yu, T., Liu, D. H., & Xianyu, Y. L. (2021). Recent advances in gold nanoparticles-based biosensors for food safety detection. Biosensors & Bioelectronics, 179. doi: 10.1016/j.bios.2021.113076
52. Ma, L. Y., Patil, A., Wu, R. H., Zhang, Y. F., Meng, Z. H., Zhang, W. L., & Wang, J. (2021). A capacitive humidity sensor based on all-protein embedded with gold nanoparticles @ carbon composite for human respiration detection. Nanotechnology, 32(19). doi: 10.1088/1361-6528/abe32d
53. Vilian, A. T. E., Umapathi, R., Hwang, S. K., Lee, M. J., Huh, Y. S., & Han, Y. K. (2021). Simple synthesis of a clew-like tungsten carbide nanocomposite decorated with gold nanoparticles for the ultrasensitive detection of tert-butylhydroquinone. Food Chemistry, 348. doi: 10.1016/j.foodchem.2020.128936
54. Wang, R. R., Mao, Y., Wang, L., Qu, H., Chen, Y., & Zheng, L. (2021). Solution-gated graphene transistor based sensor for histamine detection with gold nanoparticles decorated graphene and multi-walled carbon nanotube functionalized gate electrodes. Food Chemistry, 347. doi: 10.1016/j.foodchem.2020.128980
55. Bala, R., Sharma, R. K., & Wangoo, N. J. A. (2016). Development of gold nanoparticles-based aptasensor for the colorimetric detection of organophosphorus pesticide phorate. Anal Bioandl Chem., 408(1), 333‒338.
56. Silva, T. S. E., Soares, I. P., Lacerda, L. R. G., Cordeiro, T. A. R., Ferreira, L. F., & Franco, D. L. (2020). Electrochemical modification of electrodes with polymers derived from of hydroxybenzoic acid isomers: Optimized platforms for an alkaline phosphatase biosensor for pesticide detection. Materials Chemistry and Physics, 252. doi: 10.1016/j.matchemphys.2020.123221
57. Tang, J., Li, J. J., Xiong, P. Y., Sun, Y. F., Zeng, Z. Y., Tian, X. C., & Tang, D. P. (2020). Rolling circle amplification promoted magneto-controlled photoelectrochemical biosensor for organophosphorus pesticides based on dissolution of core-shell MnO2 nanoflower@CdS mediated by butyrylcholinesterase. Microchimica Acta, 187(8). doi: 10.1007/s00604-020-04434-0
58. Akdag, A., Isik, M., & Goktas, H. (2020). Conducting polymer-based electrochemical biosensor for the detection of acetylthiocholine and pesticide via acetylcholinesterase. Biotechnology and Applied Biochemistry. doi: 10.1002/bab.2030
59. Ayat, M., Ayouz, K., Yaddadene, C., Berouaken, M., & Gabouze, N. (2021). Porous silicon-modified electrode for electrochemical pesticide biosensor. Journal of Coatings Technology and Research, 18(1), 53‒62. doi: 10.1007/s11998-020-00381-w
60. Chouichit, P., Whangsuk, W., Sallabhan, R., Mongkolsuk, S., & Loprasert, S. (2020). A highly sensitive biosensor with a single-copy evolved sensing cassette for chlorpyrifos pesticide detection. Microbiology-Sgm, 166(11), 1019‒1024. doi: 10.1099/mic.0.000979
61. Jain, M., Yadav, P., Joshi, B., Joshi, A., & Kodgire, P. (2021). A novel biosensor for the detection of organophosphorus (OP)-based pesticides using organophosphorus acid anhydrolase (OPAA)-FL variant. Applied Microbiology and Biotechnology, 105(1), 389‒400. doi: 10.1007/s00253-020-11008-w
62. Lah, N. F. C., Ahmad, A. L., & Low, S. C. (2021). Molecular imprinted membrane biosensor for pesticide detection: Perspectives and challenges. Polymers for Advanced Technologies, 32(1), 17‒30. doi:10.1002/pat.5098
63. Alex, A. V., & Mukherjee, A. (2021). Review of recent developments (2018-2020) on acetylcholinesterase inhibition based biosensors for organophosphorus pesticides detection. Microchemical Journal, 161. doi:10.1016/j.microc.2020.105779
64. Cao, J., Wang, M., Yu, H., She, Y. X., Cao, Z., Ye, J. M., & Lao, S. B. (2020). An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides. Journal of Agricultural and Food Chemistry, 68(28), 7298‒7315. doi: 10.1021/acs.jafc.0c01962
65. Caratelli, V., Ciampaglia, A., Guiducci, J., Sancesario, G., Moscone, D., & Arduini, F. (2020). Precision medicine in Alzheimer's disease: An origami paper-based electrochemical device for cholinesterase inhibitors. Biosensors & Bioelectronics, 165. doi: 10.1016/j.bios.2020.112411
66. Davletshina, R., Ivanov, A., Shamagsumova, R., Evtugyn, V., & Evtugyn, G. (2020). Electrochemical Biosensor Based on Polyelectrolyte Complexes with Dendrimer for the Determination of Reversible Inhibitors of Acetylcholinesterase. Analytical Letters. doi: 10.1080/00032719.2020.1821700
67. Li, M., & He, B. S. (2021). Ultrasensitive sandwich-type electrochemical biosensor based on octahedral gold nanoparticles modified poly (ethylenimine) functionalized graphitic carbon nitride nanosheets for the determination of sulfamethazine. Sensors and Actuators B-Chemical, 329. doi: 10.1016/j.snb.2020.129158
68. Lipinska, W., Siuzdak, K., Karczewski, J., Dolega, A., & Grochowska, K. (2021). Electrochemical glucose sensor based on the glucose oxidase entrapped in chitosan immobilized onto laser-processed Au-Ti electrode. Sensors and Actuators B-Chemical, 330. doi: 10.1016/j.snb.2020.129409
69. Rashid, S., Nawaz, M. H., Rehman, I. U., Hayat, A., & Marty, J. L. (2021). Dopamine/mucin-1 functionalized electro-active carbon nanotubes as a probe for direct competitive electrochemical immunosensing of breast cancer biomarker. Sensors and Actuators B-Chemical, 330. doi: 10.1016/j.snb.2020.129351
70. Yang, H. S., Bao, J., Huo, D. Q., Zeng, Y., Wang, X. F., Samalo, M., Hou, C. J. (2021). Au doped poly-thionine and poly-m-Cresol purple: Synthesis and their application in simultaneously electrochemical detection of two lung cancer markers CEA and CYFRA21-1. Talanta, 224. doi: 10.1016/j.talanta.2020.121816
71. Kathiresan, V., Thirumalai, D., Rajarathinam, T., Yeom, M., Lee, J., Kim, S., & Chang, S. C. (2021). A simple one-step electrochemical deposition of bioinspired nanocomposite for the non-enzymatic detection of dopamine. Journal of Analytical Science and Technology, 12(1). doi:10.1186/s40543-021-00260-y
72. Li, J., Huang, X., Shi, W. S., Jiang, M. Y., Tian, L., Su, M. J., & Gu, H. Y. (2021). Pt nanoparticle decorated carbon nanotubes nanocomposite based sensing platform for the monitoring of cell-secreted dopamine. Sensors and Actuators B-Chemical, 330. doi: 10.1016/j.snb.2020.129311
73. Qian, L. T., Durairaj, S., Prins, S., & Chen, A. C. (2021). Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosensors & Bioelectronics, 175. doi: 10.1016/j.bios.2020.112836
74. Rashed, M. A., Harraz, F. A., Faisal, M., El-Toni, A. M., Alsaiari, M., & Al-Assiri, M. S. (2021). Gold nanoparticles plated porous silicon nanopowder for nonenzymatic voltammetric detection of hydrogen peroxide. Analytical Biochemistry, 615. doi: 10.1016/j.ab.2020.114065
75. Siew, Q. Y., Pang, E. L., Loh, H. S., & Tan, M. T. T. (2021). Highly sensitive and specific graphene/TiO2 impedimetric immunosensor based on plant-derived tetravalent envelope glycoprotein domain III (EDIII) probe antigen for dengue diagnosis. Biosensors & Bioelectronics, 176. doi: 10.1016/j.bios.2020.112895
76. Gan, X. Y., Qiu, F., Jiang, B. Y., Yuan, R., & Xiang, Y. (2021). Convenient and highly sensitive electrochemical biosensor for monitoring acid phosphatase activity. Sensors and Actuators B-Chemical, 332. doi: 10.1016/j.snb.2021.129483
77. Sun, P., Xu, K. B., Guang, S. Y., & Xu, H. Y. (2021). Controlling assembly-induced single layer RGO to achieve highly sensitive electrochemical detection of Pb(II) via synergistic enhancement. Microchemical Journal, 162. doi: 10.1016/j.microc.2020.105883
78. Zhou, X. Y., Wang, C. C., Wu, L. N., Wei, W., & Liu, S. Q. (2021). An OliGreen-responsive fluorescence sensor for sensitive detection of organophosphorus pesticide based on its specific selectivity towards T-Hg2+-T DNA structure. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 247. doi: 10.1016/j.saa.2020.119155
79. Zhou, Y. L., Lv, Y. B., Dong, H., Liu, L. T., Mao, G. L., Zhang, Y. T., & Xu, M. T. (2021). Ultrasensitive assay of amyloid-beta oligomers using Au-vertical graphene/carbon cloth electrode based on poly(thymine)-templated copper nanoparticles as probes. Sensors and Actuators B-Chemical, 331. doi: 10.1016/j.snb.2020.129429
80. Da Silva, W., & Brett, C. M. A. (2020). Novel biosensor for acetylcholine based on acetylcholinesterase/poly (neutral red) - Deep eutectic solvent/Fe2O3 nanoparticle modified electrode. Journal of Electroanalytical Chemistry, 872. doi: 10.1016/j.jelechem.2020.114050
81. Lu, J., Hu, Y. H., Wang, P. X., Liu, P. Q., Chen, Z. G., & Sun, D. P. (2020). Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in-situ monitoring of H2O2 released from H9C2 cardiac cells. Sensors and Actuators B-Chemical, 311. doi: 10.1016/j.snb.2020.127909
82. Shen, Y. F., Xu, L. Z., & Li, Y. B. (2021). Biosensors for rapid detection of Salmonella in food: A review. Comprehensive Reviews in Food Science and Food Safety, 20(1), 149‒197. doi: 10.1111/1541-4337.12662
83. Zhao, H., Ji, X., Wang, B., Wang, N., Li, X., Ni, R., & Ren J. bioelectronics. (2015). An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Biosens Bioelectron, 65, 23‒30.
84. Zheng, Y., Liu, Z., Zhan, H., Li, J., & Zhang, C. J. A. m. (2016). Studies on electrochemical organophosphate pesticide (OP) biosensor design based on ionic liquid functionalized graphene and a Co 3 O 4 nanoparticle modified electrode. 8(26), 5288‒5295.
85. Bagheri, H., Afkhami, A., Khoshsafar, H., Hajian, A., & Shahriyari, A. (2017). Protein capped Cu nanoclusters-SWCNT nanocomposite as a novel candidate of high performance platform for organophosphates enzymeless biosensor. Biosensors & Bioelectronics, 89, 829‒836. doi: 10.1016/j.bios.2016.10.003
86. Cinti, S., Neagu, D., Carbone, M., Cacciotti, I., Moscone, D., & Arduini, F. (2016). Novel carbon black-cobalt phthalocyanine nanocomposite as sensing platform to detect organophosphorus pollutants at screen-printed electrode. Electrochimica Acta, 188, 574‒581. doi:10.1016/j.electacta.2015.11.069
87. Guler, M., Turkoglu, V., & Basi, Z. (2017). Determination of malation, methidathion, and chlorpyrifos ethyl pesticides using acetylcholinesterase biosensor based on Nafion/Ag@rGO-NH2 nanocomposites. Electrochimica Acta, 240, 129‒135. doi: 10.1016/j.electacta.2017.04.069
88. Huang, B. A., Zhang, W. D., Chen, C. H., & Yu, Y. X. (2010). Electrochemical determination of methyl parathion at a Pd/MWCNTs-modified electrode. Microchimica Acta, 171(1‒2), 57‒62. doi: 10.1007/s00604-010-0408-z
89. Huo, D. Q., Li, Q., Zhang, Y. C., Hou, C. J., & Lei, Y. (2014). A highly efficient organophosphorus pesticides sensor based on CuO nanowires-SWCNTs hybrid nanocomposite. Sensors and Actuators B-Chemical, 199, 410‒417. doi: 10.1016/j.snb.2014.04.016
90. Jeyapragasam, T., & Saraswathi, R. (2014). Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide-chitosan nanocomposite. Sensors and Actuators B-Chemical, 191, 681‒687. doi: 10.1016/j.snb.2013.10.054
91. Wei, M., & Wang, J. J. (2015). A novel acetylcholinesterase biosensor based on ionic liquids-AuNPs-porous carbon composite matrix for detection of organophosphate pesticides. Sensors and Actuators B-Chemical, 211, 290‒296. doi: 10.1016/j.snb.2015.01.112
92. Zheng, Y. Y., Liu, Z. M., Jing, Y. F., Li, J., & Zhan, H. J. (2015). An acetylcholinesterase biosensor based on ionic liquid functionalized graphene-gelatin- modified electrode for sensitive detection of pesticides. Sensors and Actuators B-Chemical, 210, 389‒397. doi: 10.1016/j.snb.2015.01.003
93. Jiang, X. C., Shi, L. H., Luo, B., Wang, D. M., Wang, Z. L., Fan, M. K., & Gong, Z. J. (2020). Transmission Surface Enhanced Infrared Spectroscopy Based on AgNPs-Cu Foam Substrate for the Detection of Thiram Pesticides. Spectroscopy and Spectral Analysis, 40(6), 1809‒1814. doi:10.3964/j.issn.1000-0593(2020)06-1809-06
94. Wang, Y., Sun, C. J., Zhao, X., Cui, B., Zeng, Z. H., Wang, A. Q., & Cui, H. X. (2016). The Application of Nano-TiO2 Photo Semiconductors in Agriculture. Nanoscale Research Letters, 11. doi: 10.1186/s11671-016-1721-1
95. Li, C. J., Zhu, H. M., Guo, Y. H., Xie, Y. F., Cheng, Y. L., Yu, H., & Yao, W. R. (2021). Investigation of the transformation and toxicity of trichlorfon at the molecular level during enzymic hydrolysis of apple juice. Food Chemistry, 344. doi:10.1016/j.foodchem.2020.128653
96. Li, J. J., Xiong, P. Y., Tang, J., Liu, L. P., Gao, S., Zeng, Z. Y., & Zhuang, J. Y. (2021). Biocatalysis-induced formation of BiOBr/Bi2S3 semiconductor heterostructures: A highly efficient strategy for establishing sensitive photoelectrochemical sensing system for organophosphorus pesticide detection. Sensors and Actuators B-Chemical, 331. doi: 10.1016/j.snb.2021.129451
97. Teysseire, R., Manangama, G., Baldi, I., Carles, C., Brochard, P., Bedos, C., & Delva, F. (2021). Determinants of non-dietary exposure to agricultural pesticides in populations living close to fields: A systematic review. Science of the Total Environment, 761. doi: 10.1016/j.scitotenv.2020.143294
98. Burratti, L., Ciotta, E., De Matteis, F., & Prosposito, P. (2021). Metal Nanostructures for Environmental Pollutant Detection Based on Fluorescence. Nanomaterials, 11(2). doi: 10.3390/nano11020276
99. Du, H., Xie, Y. Q., & Wang, J. (2021). Nanomaterial-sensors for herbicides detection using electrochemical techniques and prospect applications. Trac-Trends in Analytical Chemistry, 135. doi: 10.1016/j.trac.2020.116178
100. Li, M., Zhu, J. P., Wu, Q., & Wang, Q. W. (2021). The combined adverse effects of cis-bifenthrin and graphene oxide on lipid homeostasis in Xenopus laevis. Journal of Hazardous Materials, 407. doi: 10.1016/j.jhazmat.2020.124876
101. Ren, B., Jia, B., Zhang, X. D., Wang, J., Li, Y. H., Liang, H. L., & Liang, H. W. (2021). Influence of multi-walled carbon nanotubes on enantioselective bioaccumulation and oxidative stress toxicity of indoxacarb in zebrafish(Danio rerio). Chemosphere, 267. doi: 10.1016/j.chemosphere.2020.128872
102. Yang, N., Zhou, X., Yu, D. F., Jiao, S. Y., Han, X., Zhang, S. L., & Mao, H. P. (2020). Pesticide residues identification by impedance time-sequence spectrum of enzyme inhibition on multilayer paper-based microfluidic chip. Journal of Food Process Engineering, 43(12). doi: 10.1111/jfpe.13544
103. Wei, Q. S., Zhong, B. C., Zhu, J. C., Hu, S. S., He, J., Hong, Q., & He, Q. (2020). Effect of pesticide residues on simulated beer brewing and its inhibition elimination by pesticide-degrading enzyme. Journal of Bioscience and Bioengineering, 130(5), 496‒502. doi: 10.1016/j.jbiosc.2020.07.003
How to Cite
Li, F., Dubovyk, V., & Liu, R. (2020). A review of rapid pesticide residues determination in vegetables and fruits. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 42(4), 40-48. https://doi.org/10.32845/agrobio.2020.4.6