Effect of ammonium sulfate and phosphogypsum application on nutrients dynamics and acidity of black soil


The problem of phosphogypsum accumulation in dumps of chemical plants has been an urgent problem for several decades. The ecological situation is aggravated by the fact that more and more areas are allocated for its conservation. A negative point in the application of phosphogypsum is the intake of radionuclides and fluorine into the soil and plants, small particles could be dispersed to the atmosphere by wind. But given the presence of  macro-, mezo- and microelements in it and the high price of mineral fertilizers, it is now considered as a good fertilizer and ameliorants, especially for alkaline soils. The goal of the research was to study the effectiveness of phosphogypsum application (from Sumykhimprom) and ammonium sulfate in increasing doses of nitrogen 50150 on the dynamics of nitrogen, phosphorus, potassium, calcium and hydrolytic acidity of typical middle loam black soil. An increase in nitrogen led to growing the content of hydrolyzed, nitrate and ammonium forms of nitrogen in the soil. The maximum availability of N-NO3in the soil is characteristic for the first period of sampling, in the tillering stage. At this period, the maximum difference is observed between the control and fertilized variants of the experiment. The application of phosphogypsum with N150 almost threefold increased the content of nitrates in the soil. Variants with lower doses of nitrogen also affect the accumulation of nitrates in layers 020 and 2040 cm. After harvesting, an insignificant difference was found between the control and fertilized variants (except for N150) with a general decrease in the level of nitrate availability to 0.10.2 mg/100 gm of soil. The impact of fertilizers was less on the content of labile phosphorus and exchangeable potassium. A year after fertilization, a significant increase in the value of hydrolytic acidity is observed in the fertilized variants.

It is especially noticeable at a dosage with nitrogen of 120125. In these variants, the hydrolytic acidity in both the arable and subsoil layers exceeds 4 mmol+/100 gm of soil. Changes in the content of water-soluble calcium are insignificant which can be explained by the fact that the solubility of calcium sulfate is not high enough and it takes more time for calcium to appear in an ionic form.


1. Kumar, S. S., Kumar, A., Singh, S., Malyan, S. K., Baram, S., Sharma, J., Singh, R., & Pugazhendhi, A. (2020). In-dustrial wastes: Fly ash, steel slag and phosphogypsum- potential candidates to mitigate greenhouse gas emissions from paddy fields. Chemosphere, 241. 124824. doi: 10.1016/j.chemosphere.2019.124824.
2. Yuan, J., Li, Y., Chen, S., Li, D., Tang, H., Chadwick, D., Li, S., Li, W., & Li, G. (2018). Effects of phosphogypsum, superphosphate, and dicyandiamide on gaseous emission and compost quality during sewage sludge composting. Bioresource Technology, 270, 368‒376. doi: 10.1016/j.biortech.2018.09.023.
3. Zrelli, E., R., Rabaoui, L., Daghbouj, N. (2018). Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): high mining potential and implications for environmental protection. Environ. Sci. Pollut. Res., 25, 14690–14702. doi: 10.1007/s11356-018-1648-4
4. Hilton, J. (2020). Phosphogypsum Leadership Innovation Partnership. IFA NORM Working Group, Paris, 144.
5. Tirado, R. & Allsopp, M. (2012). Phosphorus in agriculture. Problems and solutions. Greenpeace International. Tech-nical report. Amsterdam. 36.
6. Papastefanou, C., Stoulos, S., Ioannidou, A., & Manolopoulou, M. (2006). The application of phosphogypsum in agri-culture and the radiological impact. Journal of Environmental Radioactivity, 89(2), 188‒198. doi: 10.1016/j.jenvrad.2006.05.005
7. Olszewski G., Boryło A., Skwarzec B. (2016). The radiological impact of phosphogypsum stockpile in Wiślinka (north-ern Poland) on the Martwa Wisła river water. Journal of Radioanal. Nucl. Chem. 307, 653–660. doi: 10.1007/s10967-015-4191-5
8. Tucher, S. V., Hörndl, D. & Schmidhalter, U. (2018). Interaction of soil pH and phosphorus efficacy: Long-term effects of P fertilizer and lime applications on wheat, barley, and sugar beet. Ambio, 47, 41–49. doi: 10.1007/s13280-017-0970-2
9. Korobka, A. N., Orlenko, S. Ju., & Timofeev, M. N. (2016). Teorija i praktika primenenija fosfogipsa nejtralizovannogo v risovodstve: metodicheskie rekomendacii [Theory and practice of using neutralized phosphogypsum in rice growing: guadelines Krasnodar: VNII risa, 40.
10. Gazzar, El. (2006). Response of Flax (Linum Usitatissimum L.) Grown on Clayay Soil to Phosphogypsum and Nitro-gen Application. Field Crops Research Institute. Agric. Res. Center, 6, 273‒281.
11. Mahmoud, E., Ghoneim, A., Baroudy, A. El., Kader, N. A. El., Aldhumri, S. A., Othman, S., & Khamisy, R. El. (2020). Effects of phosphogypsum and water treatment residual application on key chemical and biological properties of clay soil and maize yield. doi: 10.1111/sum.12583
12. Belal, E. E., Sowfy, D. M. El & Rady, M. M. (2019). Integrative Soil Application of Humic Acid and Sulfur Improves Saline Calcareous Soil Properties and Barley. Plant Performance, Communications in Soil Science and Plant Analysis, 50, 15, 1919‒1930. doi: 10.1080/00103624.2019.1648497
13. Mühlbachová, G., Čermák, P., Vavera, R., Káš, M., Pechová, M., Marková, K., Hlušek, J., Lošák, Т. (2018). Phos-phorus availability and spring barley yields under graded p-doses in a pot experiment. Acta universitatis agriculturae et silvicul-turae mendelianae brunensis, 66(1), 111‒118. doi: 10.11118/actaun201866010111
14. Deng, Y. (2009) Method for preparing ammonium sulfate as fertilizer by phosphogypsum through ball milling CN 200910059716. [Electronoc resource]. Access mode: https://patents.google.com/patent/CN101585547B/en
15. Mullahodzhaev, T. I., & Olifson, A. L. (2012). Method of processing phosphogypsum to ammonium sulphate and phosphochalk. INTERFOS. [Electronoc resource]. Access mode: https://patents.google.com/patent/RU2510366C2/en
16. Vashishtha, M., Dongara, P., & Singh, D. (2010). Improvement in properties of urea by phosphogypsum coating. In-ternational Journal of ChemTech Research CODEN (USA), 2(1).
17. Mamataliyev, A. A., & Namazov, S. S. (2017). Nitrogen-sulphuric fertilizers based on ammonium nitrate melt and phosphogypsum. International scientific review, 8(39), 11‒13.
18. Li, Y., Luo, W., Li, G., Wang, K., & Gong, X. (2018). Performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation in pig manure composting. Bioresource Technology, 250, 53‒59. doi: 10.1016/j.biortech.2017.07.172.
19. Carvalho, M. C. S., & Nascente, A. S. (2014). Limestone and phosphogypsum effects on soil fertility, soybean leaf nutrition and yield. African Journal of agricultural research, 9(17), 1366‒1383. doi: 10.5897/AJAR2014.8626
20. Bouray, M., Moir, J., Condron, L., & Lehto, N. (2020). Impacts of Phosphogypsum, Soluble Fertilizer and Lime Amendment of Acid Soils on the Bioavailability of Phosphorus and Sulphur under Lucerne (Medicago sativa). Plants, 9, 883. doi: 10.3390/plants9070883
21. Nayak, S., Mishra, C. S. K. Guru, B. C., & Rath, M. (2011). Effect of phosphogypsum amendment on soil physico-chemical properties, microbial load and enzyme activities. Journal of Environmental Biology, 5, 613‒617.
22. Costa, C. H. M., & Crusciol, C. A. C. (2016). Long-term effects of lime and phosphogypsum application on tropical no-till soybean oats sorghum rotation and soil chemical properties. European Journal of Agronomy, 74, 119‒132. doi.org: 10.1016/j.eja.2015.12.001.
23. Gladkih, Je., Krupoderja, Ju., & Panasenko, Je. (2016). Rol okremyh elementiv zhyvlennja u pidvyshhenni stre-sostijkosti roslyn za ekstremalnyh pogodnyh umov [The role of individual nutrients in increasing the stress resistance of plants in extreme weather conditions.]. Ljudyna ta dovkillja, 1‒2(25), 55‒63. (in Ukrainian)
24. Lepeshkin, I. V., Bahatska, O. M., & Mudry, I. V. (2010). Toksykoloho-hihiyenichna otsinka mineralnoho dobryva sulfatu amoniyu ta obgruntuvannya bezpechnoho vykorystannya v silskomu hospodarstvi [Toxicological-hygienical estimation and ground of safety use of mineral sulfate ammonium fertilizer in agriculture]. Yedyne zdorov'ya ta problemy kharchuvannya Ukrayiny, 1‒2(22), 48‒55 (in Ukrainian).
25. Ferrari, S., Furlani Júnior, E., Godoy, L. J. G. de, Ferrari, J. V., Souza, W. J. O. de, & Alves, E. (2015). Effects on soil chemical attributes and cotton yield from ammonium sulfate and cover crops. Acta Scientiarum. Agronomy, 37(1), 75‒83. doi: 10.4025/actasciagron.v37i1.17972
26. Skwierawska, M., Zawartka, L., Zawadzki, B. (2008). The effect of different rates and forms of sulphur applied on changes of soil agrochemical properties. Plant soil environ., 54(4), 171–177.
27. Tkachuk O. P., Zaitseva T. M., & Dubovoy Y.V. (2018). Vplyv silskohospodarskykh toksykantiv na ahroekolohichnyy stan hruntu [Impact of agricultural toxicants on agroecological soil conditions]. Silske hospodarstvo ta lisnytstvo, 6(2), 102‒109. (in Ukrainian).
28. Tarhoniy, P. M., & Anyshynets, T. V. (1998). Vplyv fosfohipsu na vlastyvosti pivdennoho chornozemu u mezhakh Kakhovskoho zroshuvanoho masyvu [Influence of phosphogypsum on the properties of southern chernozem within the Kakhovka irrigated massif. Tavriyskyy naukovyy visnyk, 4(29), 109‒112 (in Ukrainian).
29. Makarova, T. K. (2013). Osoblyvosti zastosuvannya fosfohipsu na solontsyuvatykh zroshuvanykh chornozemakh [Features of phosphogypsum on saline irrigated chernozems]. Visnyk natsionalnoho universytetu vodnoho hospodarstva ta pryrodokorystuvannya, 3(63), 145‒153 (in Ukrainian).
30. Makarova, T. K., Maksymova, N. N., Hapich, G. V., & Chushkina, I. V. (2020). Pererozpodil hranulometrychnykh fraktsiy v chornozemi zvychaynomu pid vplyvom tryvaloho zroshennya ta khimichnoyi melioratsiyi fosfohipsom [Redistribution of particle-size fractions in ordinary chernozem affected by long-term irrigation and chemical melioration with phosphogypsum]. Land reclamation and water management, 1, 95‒101. doi: 10.31073/mivg202001 (in Ukrainian).
31. Mykhaylyuk, V. I., & Kozachenko, O. I. (2009). Protses osolontsyuvannya v umovakh zroshennya slabomineral-izovanymy vodamy i zakhody vidnovlennya rodyuchosti vtorynno-solontsyuvatykh chornozemiv [The process of salinization under irrigation by low-mineralized waters and measures to restore the fertility of secondary saline chernozems]. Visnyk Odeskoho natsionalnoho un-tu, 14(7), 309‒318 (in Ukrainian).
32. Shvartau, V. V., & Mykhalska, L. M. (2016). Fiziolohichni osnovy zhyvlennya vysokoproduktyvnykh posiviv zernovykh zlakiv. [Physiological basis of high-yielded cereals nutrition]. Fyzyolohyya rastenyy y henetyka, 48(4), 298‒309 (in Ukrainian).
33. Akanova, N. I., Vizirskaya, M. M., Seregin, M. B., & Grebennikova, T. V. (2019). The neutralized phosphogypsum as gypsum-containing meliorant. Russian case-study. International agricultural journal, 2, 12‒19. doi: 10.24411/2588-0209-2019-10048 (in Russian).
34. Hafez, E.E.D.M.M. & Kobata, T. (2012) The Effect of Different Nitrogen Sources from Urea and Ammonium Sulfate on the Spikelet Number in Egyptian Spring Wheat Cultivars on Well Watered Pot Soils, Plant Production Science, 15(4), 332‒338. doi: 10.1626/pps.15.332
35. Khodanitska, O. O., Shevchuk, O. A., & Tkachuk, O. O. (2018). Efektyvnist zastosuvannya dobryv na pshenytsi ozymiy [The effectiveness of fertilizers on winter wheat]. Zbirnyk naukovykh prats NNTS «Instytut zemlerobstva NAAN», 3(11), 69‒75 (in Ukrainian).
36. Barczak, B., Lopuszniak, W., & Moskal, M. (2019). Yield of spring barley in conditions of sulphur fertilization. Journal of Central European Agriculture, 20(2), 636‒646. doi: 10.5513/jcea01/20.2.2115
37. Skwierawska, M., Zawartka, L., & Zawadzki, B. (2008). The effect of different rates and forms of sulphur applied on changes of soil agrochemical properties. Plant Soil Environ., 54(4), 171–177.
38. Bona, F. D. D., Fedoseyenko, D., Wiren, N. V., & Monteiro, F. A. (2011). Nitrogen utilization by sulfur-deficient bar-ley plants depends on the nitrogen form. Environmental and Experimental Botany, 74, 237‒244. doi: 10.1016/j.envexpbot.2011.06.005
39. Syrová, H., & Ryant, P. (2020). Effect of sulphur foliar application on yield and grain quality of selected malting bar-ley varieties. Acta universitatis  agriculturae et silviculturae brunensis mendelianae, 68(2), 351‒359.
40. Zakharchenko, E. А. (2020). Vmist pozhyvnykh elementiv v roslynakh yachmenyu yaroho pry vnesenni fosfohipsu ta sulfatu amoniyu v umovakh chornozemu typovoho [Phosphogypsum and sulfate ammonium effect on the content of nutrient in spring barley under black soil condition]. Tendenze attuali della moderna ricerca scientifica: der Sammlung wissenschaftli-cher Arbeiten «ΛΌГOΣ» zu den Materialien der internationalen wissenschaftlich-praktischen Konferenz, Stuttgart, Deutschland : Europäische Wissenschaftsplattform, 1, 102‒104 (in Ukrainian). doi: 10.36074/05.06.2020.v1.40
41. Bayrakli, F. (1990). Ammonia volatilization losses from different fertilizers and effect of several urease inhibitors, CaCl2 and phosphogypsum on losses from urea. Fertilizer Research, 23, 147–150 doi: 10.1007/BF01073430
42. Rzeczycka, M., Mycielski, R., Kowalski, W., & Gałazka, M. (2001). Biotransformation of phosphogypsum in media containing different forms of nitrogen. Acta Microbiologica Polonica, 50(3‒4), 281‒289.
43. Prochnow, L. I., Kiehl, J. C., Pismel, F. S., & Corrente, J. E. (1995). Controlling ammonia losses during manure composting with the addition of phosphogypsum and simple superphosphate. Scientia Agricola, 52(2), 346‒349. doi: 10.1590/S0103-0161995000200024
44. Skrylnyk, Ye., Kutova, A., & Filimonchuk, Ya. (2017). Zastosuvannya defekativ dlya pidvyshchennya rodyuchosti hruntiv. Propozytsiya. [Electronoc resource]. Access mode: https://propozitsiya.com/ua/zastosuvannya-kalciievmisnih-vidhodiv (in Ukrainian)
45. Davydchuk, M. I., Kisorets, P. F., & Hantsevska, N. A. (2013). Vplyv kaltsiyevmisnykh khimichnykh meliorantiv na fizyko-khimichni ta ahrokhimichni vlastyvosti temno-kashtanovoho vtorynno osolontsovanoho gruntu [Influence of calcium-containing chemical ameliorants on physicochemical and agrochemical properties of dark chestnut secondary saline soil. Nau-kovi pratsi. Ekolohiya [Ecology], 220(232), 50‒54 (in Ukrainian).
46. Fageria, N. K., Santos, dos A. B. & Moraes, M. F. (2010). Influence of Urea and Ammonium Sulfate on Soil Acidity Indices in Lowland Rice Production. Communications in Soil Science and Plant Analysis, 41(13),1565‒1575, doi: 10.1080/00103624.2010.485237
47. Chien, S. Н., Gearhart, M. М. & Villagarcіa, S. (2011). Comparison of Ammonium Sulfate With Other Nitrogen and Sulfur Fertilizers in Increasing Crop Production and Minimizing Environmental Impact: A Review. Soil Science, 176, 327‒335. doi: 10.1097/SS.0b013e31821f0816
48. Mahmoud, E., Baroudy, A. El., El-Kader, N. A., Othman, S. & Khamisy, R. E. (2017). Effects of Phosphogypsum and Biochar Addition on Soil Physical Properties and Nutrients Uptake by Maize yield in Vertic Torrifluvents. International Journal of Scientific & Engineering Research, 8(8), 1‒27.
How to Cite
Zakharchenko, E., & Tunguz, V. (2020). Effect of ammonium sulfate and phosphogypsum application on nutrients dynamics and acidity of black soil. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 42(4), 61-69. https://doi.org/10.32845/agrobio.2020.4.8