REGULATION OF MYCOFLORA OF WINTER WHEAT SEEDS BY SPRAYING WITH FUNGICIDES
Abstract
Some members of the mycoflora of winter wheat seeds appear in it from the moment of flowering to harvest. Therefore, spray-ing plants at the beginning of flowering and later should significantly affect the mycocomplex of the grain. During 2018–2020, the impact of spraying on the formation of winter wheat seed mycoflora in the conditions of the north-eastern Forest-Steppe of Ukraine was studied. The study involved the following fungicides: Falcon, c.e., Immunocytophyte, tb, Trichophyte, s., Gaupsin, s., and Chitosan, tb. The analysis of the mycocomplex was performed on potato-glucose agar. Chemical and biological preparations significantly regulated the formation of mycoflora. This measure not only changed the number of selected species / genera, but also the general composition of fungi. In 2018, they reduced the number of dominant Alter-naria fungi and caused the appearance of Mucor sp., especially in the variant with the simultaneous use of Falcon, c.e., and Immuno-cytophyte, tb. In 2019, the use of fungicides led to a decrease in the number of dominant A. pullulans and Alternaria sp. and to increase the isolation of dangerous N. oryzae, which significantly affected the length of seedlings. The highest number of this species was noted in the variants with the use of Falcon, c.e. In 2020, the largest change in the composition of the mycoflora in three years of studying the effectiveness of fungicides was noted. All fungicides reduced the number of dominant Alternaria fungi and caused a significant appearance of A. pullulans, which was absent from the control. Three-year analysis of Falcon's test, c.e. and Trichophyte, s. against dominant Alternaria fungi showed significant changes in their numbers. The average efficiency for three years of the first was 65.1 %, of the second – 26.2 %. Fungicide spraying also significantly affected the weight of 1000 seeds. For the most part, their use increased this index, except in 2018, when in the mycoflora of seeds they provoked the appearance of Mucor sp. The most complete seeds were formed in variants with spraying with biological fungicides. The study of the effect of spraying wheat on plant length during seed germination showed the best results in variants also with biofungicides. Thus, spraying of winter wheat with chemical and biological preparations causes a decrease in the dominant species in the seed mycoflora, which leads to the appearance or increase of its other components. Very often some representatives replace other fungi.
References
2. Ahluwalia, V., Kumar, J., Rana, V.S., Sati, O.P., & Walia, S. (2015). Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity. Nat. Prod. Res., 29, 914–920. doi: 10.1080/14786419.2014.958739
3. Arshad, J., Ashraf, A., Akhtar, N., Hanif, M., & Farooq, M. A. (2006). Efficacy of some fungicides against seed-borne mycoflora of wheat. Mycopath., 4. 45–49.
4. Burova, Yu. A., Ibragimova, S. A., & Revin, V. V. (2012). Deystvie kulturalnoy zhidkosti bakterii Pseudomonas aureofaciens na razvitie semyan pshenitsyi i fitopatogennyih gribov [The effect of the culture liquid of the bacterium Pseudomonas aureofaciens on the development of wheat seeds and phytopathogenic fungi]. Izvestiya Tulskogo gosudarstvennogo universiteta. Estestvennyie nauki, 3, 198–206 (in Russian).
5. Çakmakçı, R., Turan, M., Kıtır N., Gunes, A., Nikerel, E., Sogutmaz, O., Yildirim, E., Olgun, M., Topcuoglu, B., Tufenkci, S., Karaman, M., Tarhan, L., & Mokhtari, N. (2017). The Role of Soil Beneficial Bacteria in Wheat Production: A Review. doi: 10.5772/67274
6. Chowdappa, P., Gowda, S., Chethana, C. S., & Madhura, S. (2014). Antifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. African Journal of Microbiology Research, 8(17), 1803–1812. doi: 10.5897/AJMR2013.6584
7. Dubrovskaya, N. N. (2020). Izuchenie vliyaniya fungitsidov na vozbuditelya fuzarioza kolosa pshenitsyi [Study of the effect of fungicides on the causative agent of Fusarium head blight of wheat]. Colloquium-journal, 6(58), 5–7 (in Russian). doi: 10.24411/2520-6990-2020-11448
8. El-Sayed, S.M. & Mahdy, M.E. (2015). Effect of chitosan on root-knot nematode Meloidogyne javanica on tomato plants. Int. J. ChemTech Res., 7, 1985–1992.
9. Gagkaeva, T. Yu., Gavrilova, O. P., Levitin, M. M., & Novozhilov, K. V. (2011). Fuzarioz zernovyih kultur [Fusarium sp. of cereals]. Zaschita i karantin rasteniy, 5, 70–112 (in Russian). 10. Grushko, G. V., Zhalieva, L. D., & Linchenko, S. N. (2004). Himicheskie metodyi borbyi s fuzariozami kolosa ozimoy pshe-nitsyi [Chemical methods of Fusarium head blight of winter wheat]. Uspehi sovremennogo estestvoznaniya, 11, 66–67 (in Russian).
11. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species – opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol., 2, 43–56. doi: 10.1038 / nrmicro797.
12. Hassan, O., & Chang, T. (2017). Chitosan for Eco-friendly Control of Plant Disease. Asian Journal of Plant Pathology, 11, 53–70. doi: 10.3923/ajppaj.2017.53.70.
13. Jia, X., Meng, Q., Zeng, H., Wang, W., & Yin, H. (2016). Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway. Scient. Rep., 6. doi: 10.1038/srep26144.
14. Khan, M. R., & Doohan, F. M. (2009). Comparison of the efficacy of chitosan with that of a fluorescent pseudomonad for the control of Fusarium head blight disease of cereals and associated mycotoxin contamination of grain. Biological Control, 48(1), 48–54. doi: 10.1016/j.biocontrol.2008.08.014.
15. Kolesnikov, L. Ye., Novikova, I. I., Popova, E. V., Priyatkin, N. S., & Kolesnikova, Yu. R. (2017). Biologicheskoye obosno-vaniye sovmestnogo ispol'zovaniya mikrobov antagonistov i khitozanovykh kompleksov v zashchite yarovoy myagkoy pshenitsy ot kornevoy gnili i listovykh pyatnistostey [Biological substantiation of the combined use of antagonist microbes and chitosan complexes in the protection of spring soft wheat from root rot and leaf spots]. Vestnik zashchity rasteniy, 2(92), 28–35 (in Russian).
16. Kremneva, O. Yu., Kudinova, O. A., & Volkova, G. V. (2018). Effektivnost' fungitsida «Fal'kon», ke protiv fuzarioza kolosa pshenitsy v usloviyakh Krasnodarskogo Kraya [The effectiveness of the fungicide "Falcon", ce against fusarium spike of wheat in the Krasnodar Kray]. Sovremennyye podkhody i metody v zashchite rasteniy, Yekaterinburg, 29–31 (in Russian).
17. Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci., 10, 845. doi: 10.3389 / fpls.2019.00845.
18. Masi, M., Nocera, P., Reveglia, P., Cimmino, A., & Evidente, A. (2018). Fungal metabolites antagonists towards plant pests and human pathogens: Structure-activity relationship studies. Molecules, 23, 834. doi: 10.3390/molecules23040834.
19. Mikhaylova, Ye. V., Karpun, N. N., Yanushevskaya, E. B., & Mel'kumova, Ye. A. (2018). Otsenka effektivnosti primeneniya immunoinduktorov po pokazatelyam bolezneustoychivosti persika [Evaluation of the effectiveness of the use of immunoinducers in terms of peach disease resistance]. Vestnik Voronezhskogo gosudarstvennogo agrarnogo universiteta, 2(57), 48–58 (in Russian). doi: 10.17238/issn2071-2243.2018.2.48
20. Naumova, N. A. (1970). Analysis of seeds for fungal and bacterial infections [Analysis of seeds for fungal and bacterial infections]. Kolos, Leningrad. 206 (in Russian).
21. Ons, L., Bylemans, D., Thevissen, K., & Cammue, B. P. A. (2020). Combining Biocontrol Agents with Chemical Fungicides for Integrated Plant Fungal Disease Control. Microorganisms, 8(12),1930. doi: 10.3390/microorganisms8121930.
22. Park, K.C., & Chang, T.H.(2012). Effect of chitosan on microbial community in soils planted with cucumber under protected cultivation. Korean J. Hortic. Sci. Technol., 30, 261–269. doi.org/10.7235/hort.2012.11148.
23. Polishchuk, V. O., Zhuravelʹ, S. V., Hrytsyuk, N. V., & Bakalova, A. V. (2018). Vplyv orhanichnykh tekhnolohiy na produktyvnistʹ ta fitosanitarnyy stan zhyta ozymoho zony Polissya Ukrayiny [Influence of organic technologies on productivity and phytosanitary condition of rye in the winter zone of Polissya of Ukraine]. Karantyn i zakhyst roslyn, 9–10, 5–8 (in Ukrainian).
24. Rozhkova, T. O. (2016). Elisitory zakhysnykh reaktsiy roslyn [Elicitors of protective reactions of plants]. Agroexpert, 2 (91), 32–35(in Ukrainian).
25. Rozhkova, T. O., & Karpenko, K. O. (2016). Endofitna mikroflora nasinnya pshenytsi ozymoyi na pivnichnomu skhodi Ukrayiny [Endophytic microflora of winter wheat seeds in northeastern Ukraine]. Visnyk Sumsʹkoho natsionalʹnoho ahrarnoho univer-sytetu. Seriya: Ahronomiya i biolohiya, 9, 16–20 (in Ukrainian).
26. Scarpino, V., Reyneri, A., Sulyok, M., Krska, R., & Blandino, M. (2015). Effect of fungicide application to control Fusarium head blight and 20 Fusarium and Alternaria mycotoxins in winter wheat (Triticum aestivum L.). World Mycotoxin Journal, 8(4), 499–510. doi.org/10.3920/WMJ2014.1814.
27. Shapoval, O. A., Mozharova, I. P., & Korshunov, A. A. (2014). Regulyatory rosta rasteniy v agrotekhnologiyakh [Plant growth regulators in agricultural technologies]. Zashchita i karantin rasteniy, 6, 16–20 (in Russian).
28. Soroka, T. A., Shchukin, V. B., & Il'yasova, N. V. (2017). Posevnyye kachestva semyan, morfologicheskiyei fiziologicheskiye pokazateli rasteniy ozimoy pshenitsy v nachal'nyy period rosta i razvitiya v zavisimosti ot vliyaniya razlichnykh ekzogennykh faktorov na formirovaniye semyan [Sowing qualities of seeds, morphological and physiological indicators of winter wheat plants in the initial period of growth and development, depending on the influence of various exogenous factors on seed formation]. Access mode: https://cyberleninka.ru/article/n/posevnye-kachestva-semyan-morfologicheskie-i-fiziologicheskie-pokazateli-rasteniy-ozimoy-pshenitsy-v-nachalnyy-period-rosta-i-razvitiya/viewer (in Russian).
29. Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M.S., Ramakrishnan, M., Landi, M., Araniti, F., & Sharma, A. (2020). Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent. Plants., 9(6), 762. doi: 10.3390/plants9060762.
30. Trybelʹ, S. O., Siharʹova, D. D., & Sekun, M. P. (2001). Metodyky vyprobuvannya i zastosuvannya pestytsydiv [Methods of testing and application of pesticides]. Svit, Kyyiv, 448 (in Ukrainian).
31. Watanabe, T. (2002). Pictorial Atlas of Soil and Seed Fungi. CRS Press LLC, Boca Raton, 486.
32. Yin, H., Zhao, X., & Du, Y. (2010). Oligochitosan: A plant diseases vaccine – A review. Carbohydrate Polymers, 82(1), 1–8. doi: 10.1016/j.carbpol.2010.03.066.
33. Younes, I, & Rinaudo, M. (2015). Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Marine Drugs, 13(3), 1133–1174. doi: 10.3390/md13031133.
34. Zhang, H., Li, R., & Liu, W. (2011). Effects of chitin and its derivative chitosan on postharvest decay of fruits: a review. Int J Mol Sci., 12(2), 917–934. doi: 10.3390/ijms12020917.
35. Zhuk, I. V., Dmytriyev, O. P., Lisova, H. M., & Kucherova, L. O. (2019). Vplyv koyevoyi kysloty ta donora NO na Triticum aestivum L. za umov biotychnoho stresu [Influence of kojic acid and NO donor on Triticum aestivum L. under conditions of biotic stress]. Faktory eksperymentalʹnoyi evolyutsiyi orhanizmiv, 25, 225–230 (in Ukrainian). doi: 10.7124/FEEO.v25.1166