MOLECULAR IDENTIFICATION OF A SHORT-TYPE PEPTIDOGLYCAN RECONGNITION PROTEIN, GMPGRP-SC FROM GRAPHOLITHA MOLESTA

Keywords: oriental fruit moth; innate immunity; Beauveria bassiana; Green Pest Management

Abstract

Peptidoglycan recognition protein (PGRP) as an important pattern recognition receptor, which is found in both invertebrates and vertebrates, play an important role in antibacterial immunity, due to its prominent ability in detecting and eliminating the infection pathogen. However, PGRPs mainly have been identified from Drosophila melanogaster and Bombyx mori, and there were few reports on other agricultural insects, epically about their functions and mechanism. In this study, a short – types PGRP gene named as GmPGRP-SC has been identified in the Grapholitha molesta, oriental fruit moth (OFM) based on analysis of the transcription group database of OFM from our laboratory and the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/). The GmPGRP-SC contains a highly conserved PGRP domain and has the closest genetic relationship with the PGRP gene of Leguminivora glycinivorella according to sequence and phylogenetic analyses. The real-time PCR method was used to analyze its expression pattern in the developmental stage of OFM and in different tissues of the larva of OFM. Finally, the relative expression levels of GmPGRP-SC gene in OFM were analyzed after infected by different treatment of Beauveria bassiana. The results showed that the total cDNA of GmPGRP-SC was 3 221 bp, and the coding regions was 2 268 bp, encoding 756 amino acid residues. The expression level of GmPGRP-SC was the highest in pupal stage of OFM, meanwhile in different tissues of OFM, its relative expression was higher in epithelium and hemocyte, while other stage and tissues were relatively low, and with little difference. The expression level of GmPGRP-SC was significance different when the spore suspension of B. bassiana was 105 conidia/μL infected after 48 h. And when the spore suspension of B. bassiana was 107 conidia/μL, the expression level of GmPGRP-SC was also significance different. All these results lay a foundation for the study of the role and functions of GmPGRP-SC in the innate immunity of OFM, and also do contribute to the further study of the molecular interaction between OFM and B. bassiana. The research results can help to find potential target molecules, and provide scientific basis for the development of new biogenic pesticides and the realization of Green Pest Management (GPM).

References

1. Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., Duvaud, S., Flegel, V., Fortier, A., Gasteiger, E., Grosdidier, A., Hernandez, C., Ioannidis, V., Kuznetsov, D., Liechti, R., Moretti, S., Mostaguir, K., Redaschi, N., Rossier, G., Xenarios, I. & Stockinger, H. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 40(1), 597–603. doi: 10.1093/nar/gks400
2. Armenteros, J. J. A., Tsirigos, K. D., Sonderby, C. K., Petersen, T. N., Winther, O., Brunak, S., Von Heijne, G. & Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 37(4), 420 doi: 10.1038/s41587-019-0036-z
3. Blanco, G.A., Malchiodi, E.L. & De Marzi, M.C. (2008). Cellular clot formation in a sipunculan worm: entrapment of foreign particles, cell death and identification of a PGRP-related protein. Journal of invertebrate pathology, 99(2), 156–165.
4. Benelli, G., Lucchi, A., Thomson, D. & Loriatti, C. (2019). Sex pheromone aerosol devices for mating disruption: challenges for a brighter future. Insects, 10, 308.
5. Beutler, B. (2004). Innate immunity: an overview. Molecular Immunology, 40(12), 845–859. doi: 10.1016/j. molimm.2003.10.005
6. Bustin, S. A., Benes, V., Garson, J.A., Jan, H. Jim, H. Mikael, K. Reinhold, M. Tania, N. Pfaffl, M. W. & Shipley, G. L. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem, 55(4), 611–622.
7. Cao, J. J. (2015) The expression and functional study of ecdysone signal transduction pathway genes in Grapholitha molesta. [Doctor thesis].
8. Dziarski, R. (2003). Recognition of bacterial peptidoglycan by the innate immune system. Cellular and Molecular Life Sciences, 60, 1793–1804.
9. Dziarski, R. & Gupta, D. (2006) The peptidoglycan recognition proteins (PGRPs). Genome Biology, 7(8), 232. doi: 10.1186/gb-2006-7-8-232
10. Du, S.X., Wu, C., Sue, Y.H. Yang, M. & Nathalie, B. (2011). Effects on mass rearing on the olfactory of an invasive fruit month species, Grapholita molesta (Busck). [Master thesis].
11. Du, J., Guo, J.T., Zhang, Y.S. & Wu, J.X. (2009). Effect of Temperature on Development and Reproduction of Grapholitha molesta (Busck) (Lepidoptera: Tortricidae). Acta Agriculturae Boreali-occidentalis Sinica, 18(6), 314–318.
12. Fischer, B. & Siedler, F. (2004). Using the Agilent 2100 bioanalyzer for quality control of protein samples prior to MS-analysis. Agilent Technologies.
13. Gao, Y.F. (2013). Immune Function Analysis of PGRP-SC and Cathepsin L Genes in Musca domestica. [Master thesis].
14. Geer, L.Y., Marchler-Bauer, A., Geer, R.C., Han, L.Y., He, J., He, S.Q., Liu, C.L., Shi, W.Y. & Bryant, S.H. (2010). The NCBI BioSystems database. Nucleic Acids Research, 38, 492–496. doi: 10.1093/nar/gkp858
15. Gerardo, N.M., Altincicek, B. Anselme, C., Atamian, H.S., Barribeau, S.M., Martin de, V., Duncan, E.J., Evans, J., Gabaldón, T., Ghanim, M., Heddi, A., Kaloshian, I., Latorre, A., Moya, A., Nakabachi, A., Perez-Brocal, V., Pignatelli, M., Rahbe, Y., Ramsey, J.S. Spragg, C., Tamames, J., Tamarit, D., Tamborindeguy, C. & Vincent-Monegat, C. (2010). Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biology, 11(2), R21. doi: 10.1186/gb-2010-11-2-r21
16. Gottar, M., Gobert, V., Michel, T. Belvin, M., Duyk, G., Hoffmann, J.A., Ferrandon, D. & Royet, J. (2002). The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature, 416(6881), 640–643.
17. Hultmark, D. (2003). Drosophila immunity: paths and patterns. Current Opinion in Immunology, 15(1), 12–19. doi: doi: 10.1016/S0952-7915(02)00005-5
18. Ivica, L. & Peer, B. (2017). 20 years of the SMART protein domain annotation resource. Nucleic Acids Research, 46(1), 493–496. doi: 10.1093/nar/gkx922
19. Kang, D., Liu, G., Lundström, A., Gelius, E. & Steiner, H. (1998). A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proceedings of The National Academy of Sciences of The United States of America, 95(17), 10078–10082. doi: 10.1073/pnas.95.17.10078
20. Kanga, L. H. B., Pree, D. J., van Lier, J. L. & Walker, G. M. (2003). Management of insecticide resistance in oriental fruit moth (Grapholita molesta; Lepidoptera: Tortricidae) populations from Ontario. Pest Management Science, 59, 921–927.
21. Kong, W. N., Wang, Y., Guo, Y. F., Chai, X. H., Li, J. & Ma, R. Y. (2020). Behavioral effects of different attractants on adult male and female oriental fruit moths, Grapholita molesta. Pest Management Science, 76(9), 3225–3235. doi: 10.1002/ps.5878
22. Leone, P., Bischoff, V., Kellenberger, C., Hetru, C., Royetd, J. & Roussel, A. (2008). Crystal structure of Drosophila PGRP-SD suggests binding to DAP-type but not lysine-type peptidoglycan. Molecular Immunology, 45, 2521–2530. doi: 10.1016/j.molimm.2008.01.015
23. Lin, C. Q. & Yao, B. (2012). Recent Advance in Digital PCR. Progress in Chemistry, 24(12), 2415–2423
24. Livak, K. J. & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 (–Delta Delta C(T)) Method. Methods, 25, 402–408.
25. Liu, Y., Shen, D. X., Zhou, F., Wang, G. R. & An, C. J. (2014). Identification of Immunity-Related Genes in Ostrinia furnacalis against Entomopathogenic Fungi by RNA-Seq Analysis, Plos One, 9(1), e86436. doi: 10.1371/journal.pone.0086436
26. Liu W. (2019). Immune response of intestinal reactive oxygen species and peptidoglycan recognition protein genes in Antheraea pernyi. [Doctor thesis].
27. Lu, Y. Z., Su, F. H., Li, Q.L., Zhang, J., Li, Y. J., Tang, T., Hu, Q. H. & Yu, X. Q. (2020). Pattern recognition receptors in Drosophila immune responses. Developmental and Comparative Immunology, 102, 9. doi: 10.1016/j.dci.2019.103468
28. Myllymaki, H., Valanne, S. & Ramet, M., (2014). The Drosophila imd signaling pathway. The Journal of Immunology, 192, 3455–3462
29. Natale, D., Mattiacci, L., Hern, A., Pasqualini, E. & Dorn, S. (2003). Response of female Cydia molesta (Lepidoptera: Tortricidae) to plant derived volatiles. Bulletin of Entomological Research, 93, 335–342. doi: 10.1079/BER2003250
30. Nolan, T., Hands, R.E. & Bustin, S.A. (2006). Quantification of mRNA using real-time RT-PCR. Nature Protocol, 1, 1559–1582.
31. Ochiai, M. & Ashida, M. (1999). A pattern recognition protein for peptidoglycan. Cloning the cDNA and the gene of the silkworm, Bombyx mori. Journal of Biological Chemistry, 274(17), 11854–11858. doi: https://doi.org/10.1074/jbc.274.17.11854
32. Pavsic, J., Zel, J. & Milavec, M (2016). Assessment of the real-time PCR and different digital PCR platforms for DNA quantification. Analytical and Bioanalytical Chemistry, 408(1), 107–121.
33. Pattyn, F., Speleman, F., De Paepe, A. & Vandesompele, J. (2003). RTPrimerDB: the real-time PCR primer and probe database. Nucleic Acids Research, 31(1), 122–123. doi: 10.1093/nar/gkg011
34. Rufer, A. (2010) Therapeutic protein analysis with the Agilent 2100 Bioanalyzer. Biotechniques, 49(3), 669–671.
35. Saranraj, P. & Jayaprakash, A. (2017). A grobeneficial entomopathogenic fungi–Beauveria bassiana: A Review. Asian Journal of Multidisciplinary Research, 3(2), 1051–1087. doi: 10.22192/iajmr.2017.3.2.4
36. Sarker, S., Woo, Y.H. & Lim, U.T. (2020). Laboratory Evaluation of Beauveria bassiana ARP14 Against Grapholita molesta (Lepidoptera: Tortricidae), Current Microbiology, 77(9), 2365–2373. doi: 10.1007/s00284-020-02012-4
37. Soohyun, L., Hwa, S.C., Byungho, L., Yang, J.O., Jeongsu, O., Minjin, K., Sooncheol, L., Byungwook, L., Kang, C. & Sanghyuk, L. (2011). Accurate quantification of transcriptome from RNA-Seq data by effective length normalization. Nucleic Acids Research, 39(2), e9. doi: 10.1093/nar/gkq1015
38. Sudhir, K., Glen, S. & Koichiro, T. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology & Evolution, 33(7), 54. doi: 10.1093/molbev/msw054
39. Sumathipala, N. & Jiang, H.B. (2010). Involvement of Manduca sexta peptidoglycan recognition protein-1 in the recognition of bacteria and activation of prophenoloxidase system. Insect Biochemistry and Molecular Biology, 40, 487–495. doi: 10.1016/j.ibmb.2010.04.008
40. Tanaka, H., Ishibashi, J. Fujita, K., Nakajima, Y., Sagisaka, A., Tomimoto, K., Suzuki, N., Yoshiyama, M., Kaneko, Iwasaki, T., Sunagawa, T., Yamaji, K., Asaoka, A., Mita, K. & Yamakawa, M. (2008). A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochemistry and Molecular Biology, 38, 1087–1110.
41. Telles, G. P., Araujo, G. S., Walter, M. E. M. T., Brigido, M. M. & Almeida, N. F. (2018). Live neighbor-joining. BMC Bioinformatics, 19, 172. doi: 10.1186/s12859-018-2162-x
42. Tzou, P., De Gregorio, E. & Lemaitre, B. (2002). How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Current Opinion in Microbiology, 5, 102–110.
43. Vandesompele, J.D.P.K., Pattyn. F., Poppe B, Roy, N.V., Paepe,A.D. & Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, 7. doi: 10.1186/gb-2002-3-7-research0034
44. Wang, L. & Wang, Q. (2011). Application of SPSS in Teaching of Variance Analysis. 2nd International Conference on Education and Sports Education, 1.
45. Werner, T., Liu, G., Kang, D.W., Ekengren, S., Steiner, H. & Hultmark, D. (2000). A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proceedings of The National Academy of Sciences of The United States of America, 97(25), 13772–13777
46. Wiegmann, B.M., Trautwein, M.D., Winkler, I.S., Barr, N.B., Kim, J.W., Lambkin, C. Bertone, M.A., Cassel, B.K., Bayless, K.M. & Heimberg, A.M. (2011). Episodic radiations in the fly tree of life. Proceedings of the National Academy of Sciences of the United States of America, 108, 5690–5695.
47. Yang, P.J., Zhan, M.Y., Ye, C., Yu, X.Q. & Rao, X.J. (2017). Molecular cloning and characterization of a short peptidoglycan recognition protein from silkworm Bombyx mori. Insect Molecular Biology, 1, 12–33. doi: 10.1111/imb.12330.
48. Zaidman-Remy, A., Poidevin. M., Herve, M., Welchman, D.P., Paredes, J.C., Fahlander, C., Steiner, H., Mengin-Lecreulx, D. & Lemaitre, B. (2011). Drosophila immunity: analysis of PGRP-SB1 expression, enzymatic activity and function. PLoS. ONE, 6, e17231. doi: 10.1371/journal.pone.0017231
49. Zhao, P., Xia, F., Jiang, L., Guo, H. Z., Xu, G. W., Sun, Q., Wang, B. B., Wang, Y. M., Lu, Z. Y. & Xia, Q. Y. (2018). Enhanced antiviral immunity against Bombyx mori cytoplasmic polyhedrosis virus via overexpression of peptidoglycan recognition protein S2 in transgenic silkworms. Developmental & Comparative Immunology, 87, 84–89.
50. Zhang, F.M., Shan, S.J., Xu, X.Y., Wang, Y., Zhang, Y.H. Yin, M. & Yang, G.W. (2019). Molecular characterization and expression analysis of two peptidoglycan recognition proteins (CcPGRP5, CcPGRP6) in larvae ontogeny of common carp Cyprinus carpio L. and upon immune stimulation by bacteria. BMC veterinary Research, 15, 10. doi: 10.1186/s12917-018-1744-1.
51. Zhang, X.Y. Chen, D., Zhang, S.Y., Wei, D. & Wang, J.J. (2020). Cloning and functional characterization of the peptidoglycan recognition protein gene BdPGRP-SB1 in Bactrocera dorsalis (Diptera: Tephritidae). Acta Entomologic Sinica, 63(9), 1070–1080. doi: 10.16380/j.kcxb.2020.09.004
Published
2022-02-21
How to Cite
Cao, Z., Cao, J., Zhu, H., & Vlasenko, V. (2022). MOLECULAR IDENTIFICATION OF A SHORT-TYPE PEPTIDOGLYCAN RECONGNITION PROTEIN, GMPGRP-SC FROM GRAPHOLITHA MOLESTA. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 45(3), 52-63. https://doi.org/10.32845/agrobio.2021.3.7