SOIL CHEMICAL PROPERTIES AND PHYTODIVERSITY OF RIPARIAN FOREST LAND NEAR NANWAN LAKE
Abstract
The riparian zone of reservoir is a spatially fluctuating ecotone (between terrestrial and aquatic ecosystems) and is an important area for nutrients’ circulation and materials’ flow. Riparian forest plays an important role in the stability of riparian habitat. As yet, the relationship between soil chemical properties and biodiversity of riparian forest near reservoir has not been thoroughly elaborated. In this study, we analyzed the soil chemical properties (total nitrogen and carbon, available phosphorous and kalium) and community structure characteristics of trees (diameter at breast height, tree height, canopy width), shrubs and herbaceous (Shannon diversity index, Simpson dominance index, species richness index, Pielou uniformity index) in the riparian forest land at the tail section that is a part of Nanwan lake reservoir in China. Results showed that the structure of riparian forest near reservoir of Nanwan lake represents a stable community. There was no significant difference in soil chemical properties and vegetation biodiversity between the type of centre’s island and the type of peninsula. The range of the nutrients’ content in forest land (nеar Nanwan lake reservoir), respectively, is: total carbon (TC) – 7,8–19,5 g/kg, total nitrogen (TN) – 0,72–1,49 g/kg, available phosphorous (AP) – 1,89–3,83 mg/kg, available kalium (AK) – 48,0–100,5 mg/kg. The soil pH value of the riparian forest land near Nanwan Lake reservoir is low due to strong acid reaction, so the toxic effects of aluminum should be considered. In the RDA analysis, the first axis is explained 73,16 % of the biodiversity factors of trees, shrubs and herbaceous, and the second axis – 6,48 %. The reflection of the presence of shrub-herbaceous layer in the values of the chemical properties of soil is significant: this layer is an important source of soil organic matter in the coastal zone and has a positive effect on soil quality. Therefore, attention should be paid to maintaining the stability of community structure in understory shrub-herbaceous layer.
References
2. Alatalo, R.V. (1981). Problems in the measurement of evenness in ecology. Oikos, 37 (2), 199–204. doi: 10.2307/3544465.
3. Batlle-Aguilar, J., Brovelli, A., Porporato, A. & Barry, D.A. (2011). Modelling soil carbon and nitrogen cycles during land use change. Sustainable Agriculture Volume 2, Springer, Dordrecht. DOI: 10.1007/978-94-007-0394-0_23.
4. Bicalho, S.T.T., Langenbach, T., Rodrigues, R.R., Correia, F.V., Hagler, A.N., Matallo, M.B. & Luchini, L.C. (2010). Herbicide distribution in soils of a riparian forest and neighboring sugar cane field. Geoderma, 158 (3–4), 392–397. doi: 10.1016/j.geoderma.2010.06.008.
5. Borisade, T.V. (2020). Nutrient status in herbaceous layer of riparian forests in Southwestern, Nigeria. Tropical Ecology, 61, 589–593. Doi: 10.1007/s42965-020-00105-6.
6. Bouchard, V., Frey, S.D., Gilbert, J.M. & Reed, S.E. (2007). Effects of macrophyte functional group richness on emergent freshwater wetland functions. Ecology, 88 (11), 2903–2914. Doi: 10.1890/06-1144.1.
7. Cybill, S., Soraya, R., Jean-Nicolas, B., Laurent, H., Nicolas, P. & Isabelle, C. (2020). Ecological implications of the replacement of native plant species in riparian systems: unexpected effects of Reynoutria japonica Houtt. leaf litter. Biological Invasions, 22, 1917–1930. Doi: 10.1007/s10530-020-02231-7.
8. de Sosa, L. L., Glanville, H.C., Marshall, M.R., Williams, A.P. & Jones, D.L. (2018). Quantifying the contribution of riparian soils to the provision of ecosystem services. Science of The Total Environment, 624, 807–819. Doi: 10.1016/j.scitotenv.2017.12.179.
9. de Souza, A.L.T., Fonseca, D.G., Libório, R.A. & Tanaka, M.O. (2013). Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil. Forest Ecology and Management, 298, 12–18. Doi: 10.1016/j.foreco.2013.02.022.
10. Fan, J., Wang, J.Y., Hu, X.F. & Chen, F.S. (2014). Seasonal dynamics of soil nitrogen availability and phosphorus fractions under urban forest remnants of different vegetation communities in Southern China. Urban Forestry & Urban Greening, 13 (3), 576–585. Doi: 10.1016/j.ufug.2014.03.002.
11. Fournier, B., Guenat, C., Bullinger-Weber, G. & Mitchell, E.A.D. (2013). Spatio-temporal heterogeneity of riparian soil morphology in a restored floodplain. Hydrology and Earth System Sciences, 17 (10), 4031–4042. Doi: 10.5194/hess- 17-4031-2013.
12. Gärdenäs, A.I., Ågren, G.I., Bird, J.A., Clarholm, M., Hallin, S., Ineson, P., Kätterer, T., Knicker, H., Nilsson, S.I., Näsholm, T., Ogle, S., Paustian, K., Persson, T. & Stendahl, J. (2011). Knowledge gaps in soil carbon and nitrogen interactions– From molecular to global scale. Soil Biology and Biochemistry, 43 (4), 702–717. Doi: 10.1016/j.soilbio.2010.04.006.
13. Gao, Y.Z., Wang S.P., Han, X.G., Chen, Q.S., Wang, Y.F., Zhou, Z.Y., Zhang, S.M. & Yang, J. (2004). Soil nitrogen regime and the relationship between aboveground green phytobiomass and soil nitrogen fractions at different stocking rates in the Xilin river basin, Inner Mongolia. Chinese Journal of Plant Ecology, 28 (3), 285–294. Doi: 10.17521/cjpe.2004.0042.
14. Gilliam, F.S. (2007). The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience, 57 (10), 845–858. Doi: 10.1641/B571007.
15. Hale, R., Reich, P., Daniel, T., Lake, P.S. & Cavagnaro, T.R. (2014). Scales that matter: guiding effective monitoring of soil properties in restored riparian zones. Geoderma, 228–229, 173–181. Doi: 10.1016/j.geoderma.2013.09.019.
16. Jacobs, T.C. & Gilliam, J.W. (1985). Riparian losses of nitrate from agricultural drainage waters. Journal of Environmental Quality, 14 (4), 472–478. Doi: 10.2134/jeq1985.00472425001400040004x.
17. Jiao, S.Y., Zhang, M., Wang, Y.M., Liu, J.Q. & Li, Y.Q. (2014). Variation of soil nutrients and particle size under different vegetation types in the Yellow River Delta. Acta Ecologica Sinica, 34 (3), 148–153. Doi: 10.1016/j.chnaes.2014.03.003.
18. Laffite, A., Florio, A., Andrianarisoa, K.S., des Chatelliers, C.C., Schloter-Hai, B., Ndaw, S.M., Periot, C., Schloter, M., Zeller, B., Poly, F. & Le Roux, X. (2020). Biological inhibition of soil nitrification by forest tree species affects Nitrobacter populations. Environmental microbiology 22 (3): 1141–1153. Doi: 10.1111/1462-2920.14905.
19. Li, H., Shen, W., Zou, C., Jiang, J., Fu, L. & She, G. (2013). Spatio-temporal variability of soil moisture and its effect on vegetation in a desertified aeolian riparian ecotone on the Tibetan Plateau, China. Journal of Hydrology, 479, 215–225. Doi: 10.1016/j.jhydrol.2012.12.002.
20. Lite, S., Bagstad, K.J. & Stromberg, J.C. (2005). Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. Journal of Arid Environments, 63 (4), 785–813. Doi: 10.1016/j.jaridenv.2005.03.026.
21. Liu, D.S., Zhao, J., Chen, X.B., Li, Y.Y., Weiyan, S.P. & Feng, M. (2018). Dynamic processes of hyporheic exchange and temperature distribution in the riparian zone in response to dam-induced water fluctuations. Geosciences Journal, 22 (3), 1–11. Doi: 10.1007/s12303-017-0065-x.
22. Liu, W.Z., Liu, G.H. & Zhang, Q.F. (2011). Influence of vegetation characteristics on soil denitrification in shoreline wetlands of the Danjiangkou Reservoir in China. Clean – Soil, Air, Water, 39 (20), 109–115. Doi: 10.1002/clen.200900212.
23. Lu, X.K., Mao, Q.G., Gilliam, F.S., Luo, Y.Q. & Mo, J.M. (2014). Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 20 (12): 3790–3801. Doi: 10.1111/gcb.12665.
24. Lu, X.K., Mao, Q.G., Mo, J.M., Gilliam, F.S., Zhou, G.Y., Luo, Y.Q., Zhang, W. & Huang, J. (2015). Divergent responses of soil buffering capacity to long-term N deposition in three typical tropical forests with different land-use history. Environmental science & technology, 49 (7), 4072–4080. Doi: 10.1021/es5047233.
25. Magurran, A.E. (1988). Ecological diversity and its measurement. Princeton university press.
26. McClain, C.D., Holl, K.D. & Wood, D.M. (2011). Successional models as guides for restoration of riparian forest understory. Restoration Ecology, 19 (2), 280–289. Doi: 10.1111/j.1526-100X.2009.00616.x.
27. Mikkelsen, K. & Vesho, I. (2000). Riparian soils: A literature review.
28. Nakamura, F., Yajima, T. & Kikuchi, S.I. (1997). Structure and composition of riparian forests with special reference to geomorphic site conditions along the Tokachi River, northern Japan. Plant Ecology, 133, 209–219. Doi: 10.1023/A:1009787614455.
29. Nilsson, M.C. & Wardle, D.A. (2005). Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Frontiers in Ecology and the Environment, 3 (8), 421–428. Doi:1 0.1890/1540-9295(2005)003[0421:UVAAFE]2.0.CO;2.
30. Ran, Y.G., Ma, M.H., Liu, Y., Zhu, K., Yi, X.M., Wang, X.X., Wu, S.J. & Huang, P. (2020). Physicochemical determinants in stabilizing soil aggregates along a hydrological stress gradient on reservoir riparian habitats: Implications to soil restoration. Ecological Engineering, 143, 105664. Doi: 10.1016/j.ecoleng.2019.105664.
31. Ring, E., Widenfalk, O., Jansson, G., Holmström, H., Högbom, L. & Sonesson, J. (2018). Riparian forests along small streams on managed forest land in Sweden. Scandinavian Journal of Forest Research, 33 (2), 133–146. Doi: 10.1080/02827581.2017.1338750.
32. Sarah, P. & Rodeh, Y. (2004). Soil structure variations under manipulations of water and vegetation. Journal of Arid Environments, 58 (1), 43–57. Doi: 10.1016/S0140-1963(03)00126-5.
33. Soares, J.A.H., de Souza, A.L.T, de Abreu Pestana, L.F. & Tanaka, M.O. (2020). Combined effects of soil fertility and vegetation structure on early decomposition of organic matter in a tropical riparian zone. Ecological Engineering, 152, 105899. Doi: 10.1016/j.ecoleng.2020.105899.
34. Tripathi, N. & Singh, R.S. (2009). Influence of different land uses on soil nitrogen transformations after conversion from an Indian dry tropical forest. Catena, 77 (3), 216–223. Doi 10.1016/j.catena.2009.01.002.
35. Weigel, R., Gilles, J., Klisz, M., Manthey, M. & Kreyling, J. (2019). Forest understory vegetation is more related to soil than to climate towards the cold distribution margin of European beech. Journal of Vegetation Science, 30 (4), 746–755. Doi: 10.1111/jvs.12759.
36. Ye, C., Chen, C.R., Butler, O.M., Rashti, M.R, Esfandbod, M., Du, M. & Zhang, Q.F. (2019). Spatial and temporal dynamics of nutrients in riparian soils after nine years of operation of the Three Gorges Reservoir, China. Science of The Total Environment, 664, 841–850. Doi: 10.1016/j.scitotenv.2019.02.036.
37. Young, E.O. & Ross, D.S. (2016). Total and labile phosphorus concentrations as influenced by riparian buffer soil properties. Journal of Environmental Quality, 45 (1), 294–304. Doi: 10.2134/jeq2015.07.0345.
38. Zhang, B.B., Xu, Q., Gao, D.Q., Jiang, C.W., Liu, F.T., Jiang, J. & Ma, Y.B. (2019). Higher soil capacity of intercepting heavy rainfall in mixed stands than in pure stands in riparian forests. Science of The Total Environment, 658, 1514–1522. Doi: 10.1016/j.scitotenv.2018.12.171.
39. Zhang, M.Y., O’Connor, P.J., Zhang, J.Y. & Ye, X.X. (2021). Linking soil nutrient cycling and microbial community with vegetation cover in riparian zone. Geoderma, 384, 114801. Doi: 10.1016/j.geoderma.2020.114801.
40. Zheng, L.T., Chen, H.Y.H. & Yan, E.R. (2019). Tree species diversity promotes litterfall productivity through crown complementarity in subtropical forests. Journal of Ecology, 107 (4), 1852–1861. Doi: 10.1111/1365-2745.13142.