Keywords: state of ecosystem monitoring, organisms-bioindicators, pollinating insects, climate change, honey bee


Under the global environmental changes, the use of bioindicators to monitor the state of ecosystems is gaining popularity due to the numerous advantages of organisms – bioindicators. Among these organisms, one of the most common taxa is Insects (Insecta). When insects are using for the impact of anthropogenic factors on the environment the determination of the ecological status of terrestrial and aquatic ecosystems is used. changes in size, proportions, coverings, color, ugliness, features of ontogenesis, population characteristics are using as criteria. The use of pollinating insects as bioindicators is especially multifaceted. Its are an important component of biogeocenoses, contribute to the natural reproduction and enrichment of flora. One of the most valuable bioindicators of the ecosystem state among pollinating insects is the honey bee (Apis mellifera L.), widespread in the world. Bee pollination of entomophytic crops in Ukraine leads to an increase in yield of up to 30%, and profits from increased yields significantly exceed the cost of all beekeeping products. The use of honey bees as a biological indicator allows to use as a criterion well-studied morphological, ecological and behavioral characteristic of the honey bee populations, including their productivity. Thus, with a decrease in air temperature compared to optimal, during the flowering of winter oilseed rape, regardless of the length of its stay in this phase, there was a decrease in honey production from 23.8 to 76.2% and bee pollen – from 33.3 to 55.5%. A particular advantage of this species is the relative resistance of bee colonies to environmental stressors, their ability to accumulate pollutants and stereotypically respond to them. This allows the use of honey bee populations to monitor new threats, including climate changes, which is especially true in Southern Ukraine, where severe droughts have become more frequent in recent decades and summer temperatures have risen significantly. The spring period of the average daily air temperature transition through 0° and 15,0° and 15°С, decreased to 2 months and was characterized by a sharp increase in heat. Climate change has a negative impact on the state of pollinator insect populations due to the deterioration of their forage base (reduction of biodiversity and productivity of honey plants); increase the risk of extinction of these species. The climate change factor, in particular, affected the productivity dynamics of the honey bee population in Ukraine, for the period 2005- 2019 the number of bee families decreased from 3369.0 thousand to 2633.2 thousand. Thus, use as a biological indicator of pollinating insects by example of the honey bee (A. Mellifera L.) populations confirms the expediency of this method for studying the state of ecosystem elements and climate change.


1. Amin, Md.R., Nahid, S. & Suh S. Jae (2021). Pollinating insects for bioindication of the ecosystem. Agricultural Science Digest. Vol. 41. Iss. 4. Р. 615-619. doi: 10.18805/ag. D-290
2. Asmaa E., & Abdel Rahman, T. (2020). Assessment of pesticide Residues in honey and their prospective Risk to Consumers in Egypt. Egyptian Journal of Plant Protection Research Institute, 3. 1028–1034. /publication/354611121 Assessment of pesticide Residues in honey and their prospective Risk to Consumers in Egypt
3. Bargańska, Ż., Ślebioda M., & Namieśnik, J. (2016) Honey bees and their products: Bioindicators of environmental contamination, Critical Reviews in Environmental Science and Technology, 46:3, 235–248. doi: 10.1080/10643389.2015.1078220
4. Barinova, S. (2017). How to Align and Unify the Cell Counting of Organisms for Bioindication. International Journal of Environmental Sciences .2(2): 555–585. doi: 10.19080/IJESNR.2017.02.555585
5. Barinova, S. (2017). Essential and Practical Bioindication Methods and Systems for the Water Quality Assessment. International Journal of Environmental Sciences & Natural Resources; 2(3): 555–588. doi: 10.19080/ IJESNR. 2017.02.555588.08
6. Beltrán, R., Valls, A., Cebrián, N., Zornoza, C., García Breijo, F., Reig Armiñana, J., Garmendia, A. & Merle H. (2019). Effect of temperature on pollen germination for several Rosaceae species: influence of freezing conservation time on germination patterns. Peer J 7: e8195
7. Buchori, D., Rizali, A., Rahayu, G.A., & Mansur, I. (2018). Insect diversity in post-mining areas: Investigating their potential role as bioindicator of reclamation success. Biodiversitas 19: 1696–1702. doi:10.13057/biodiv/d190515
8. Burkle, L.A., Marlin, J.C. & Knight, T.M. (2013). Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science. 339. Р. 1611–1615.
9. Cane, J.H. & Panye, J.A. (1988). Foraging ecology of the bee Habropoda laboriosa (Hymenoptera: Anthophoridae), an oligolege of blueberries (Ericaceae: Vaccinium) in the southeastern United States. Annals of the Entomological Society of America. 81. Р. 419–427.
10. Caruso, C.M. (2000). Competition for pollination influences selection on floral traits of Ipomopsis aggregate. Evolution. 54. Р. 1546–1557.
11. Celli, G., & Maccagnani, B. (2003). Honey bees as bioindicators of environmental pollution., Bulletin of Insectology, 137–139. Access mode:
12. Chmil, A.S. (2020). Analiz stanu ta tendentsii rozvytku haluzi bdzhilnytstva Prychornomorskoho rehionu. Prychornomorski ekonomichni studii [Analysis of the state and trends in the development of the beekeeping industry of the Black Sea region]. Prychornomorski ekonomichni studii, 51, 172–175. doi: 10.32843/bses.51-27.
13. Chong, T., Azam J., Afsheen I., Zia S., Javed A., Saeed M., Sarwar, R., Kaleem M. (2015). Evaluating Insects as Bioindicators of Heavy Metal Contamination and Accumulation near Industrial Area of Gujrat, Pakistan. 2015. doi: 10.1155/2015/ 942751
14. Christopher, A.H., Shapiro, A.M., Jame, A.F., Nice, C.C., James, H.T., David, P.W., & Matthew L.F. (2021). Insects and recent climate change. Proceedings of the National Academy of Sciences, 118 (2) e2002543117; doi: 1010.1073/pnas. 2002543117
15. Cresswell, J.E., Page, C.J., Uygun, M.B., Holmbergh, M., Li, Y. & Wheeler, J.G. (2012). Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). Zoology (Jena), 115, 365–71. doi: 10.1016/j.zool.2012.05.003
16. Cunningham, M.M., Tran, L., McKee, C.G., Polo, R.O., Newman, T., Lansing, L., Griffiths, J.S., Bilodeau, G.J., Rott, M.l, & Guarna, M.M. (2022). Honey bees as biomonitors of environmental contaminants, pathogens, and climate change. Ecological Indicators, 134, doi: 10.1016/j.ecolind.2021.108457.
17. Descamps, Ch., Quinet, M., & Jacquemart, A.L. (2021). Climate Change–Induced Stress Reduce Quantity and Alter Composition of Nectar and Pollen from a Bee-Pollinated Species (Borago officinalis, Boraginaceae). Frontiers in Plant Science, 12, е. 755843. doi: 10.3389/fpls.2021.755843
18. Desneux, N., Decourtye, A. & Delpuech, J.M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol. 52. Р. 81–106. doi: 10.1146/annurev.ento.52.110405.091440
19. Djamel, B., Abdelkader, R., Abdelghani, B., & Lotfi, M. (2021). Evaluating Insects as Bioindicators of the Wetland Environment Quality (Arid Region of Algeria). In D. E. Cano, D. R. Quinto, D. A. Cano, & D. C. Maria (Eds.), Vegetation Index and Dynamics. Intech Open. doi: org/10.5772/ intechopen.97700
20. Dorneles, A., Louzada, J., & Comita, L. (2014). Dung beetles as indicators of tropical forest restoration success: Is it possible to recover species and functional diversity? Biological Conservation. 169, 248–257. doi:10.1016/ j.biocon.2013.11.023
21. Esyakova, O. A., & Voronin, V. M. (2020). Bioindication methods in environmental engineering. OP Conference Series: Materials Science and Engineering: Volume 862, Chemical, Ecological and Power Engineering. doi: 10.1088/1757-899X/862/6/062009
22. Fontaine, C., Dajoz, I., Meriguet, J. & Loreau, M. (2006). Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communities. PLoS Biology, 4, 129–135.
23. Ghazoul, J. (2006). Floral diversity and the facilitation of pollination. Journal of Ecology. 94. Р. 295–304.
24. Giannini, T. C., Maia-Silva, C., Acosta, A. L., Celso F. Martins, F. C. V. Zanella, C. A. L. Carvalho, M. H., Saraiva A. M., Siqueira J. O. & Vera L. I. F. (2017). Protecting a managed bee pollinator against climate change: strategies for an area with extreme climatic conditions and socioeconomic vulnerability. Apidologie, 48, 784–794. doi: 10.1007/s13592-017-0523-5
25. Gill, R.J., Ramos-Rodriguez, O. & Raine, N.E. (2012). Combined pesticide exposure severely affects individualand colony-level traits in bees. Nature, 491, 105–108.
26. Godzik, B. (2020) Use of Bioindication Methods in National, Regional and Local Monitoring in Poland-Changes in the Air Pollution Level over Several Decades. Atmosphere, 11, 143. doi:10.3390/atmos11020143
27. Goldblatt, P. & Manning, J.C. (2000). The long-proboscid fly pollination system in southern Africa. Annals of the Missouri Botanical Garden. 87, 146–170.
28. Goulson, D., Nicholls, E., Botías, C. & Rotheray, E.L. (2015). Beedeclines driven by combined stress from parasites, pesticides, and lack of flowers. Science. 347. 1255957.
29. Guo, B.S., Yang, J.M. & Xu, Y.B. (2001). Problems and research advance of the pollination insects. Southwest China Journal of Agricultural Sciences. 14(4), 102–108.
30. Harder, L.D. (1983). Flower handling efficiency of bumble bees: morphological aspects of probing time. Oecologia, 57, 274–280.
31. Hareem, S. (2020). Terrestrial Insects as Bioindicators of Environmental Pollution: A Review. University of Wah Journal of Science and Technology (UWJST), 4, 21–25.
32. Harmens, H.; Norris, D., & Mills, G.(2013). Heavy Metals and Nitrogen in Mosses: Spatial Patterns in 2010/2011 and Long-Term Temporal Trends in Europe; Centre for Ecology & Hydrology: Bangor, UK, 2013; KM.pdf
33. Heinrich, B. & Raven, P.H. (1972). Energetics and pollination ecology. Science. 176, 597–602.
34. Hickman, J.C. (1974). Pollination by ants: a low-energy system. Science. 184, 1290–1292.
35. Holt, E. A., & Miller, S. W. (2010). Bioindicators: Using Organisms to Measure Environmental Impacts. Nature Education Knowledge, 3(10), 8. Accee mode:
36. Huang, S.Q. & Guo, Y.H. (2000). New advances in pollination biology. Chinese Science Bulletin. 45, 225–237.
37. Johnson, SD, Peter, C.I., Nilsson, L.A. & Аgren, J. (2003). Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants. Ecology. 84, 2919–2927.
38. Jóźwiak, M. A. & Jóźwiak, M. (2014). Bioindication as challenge in modern environmental Protection. Ecological Chemistry and Engineering S, 21 (4), 577–591. doi: 10.1515/eces-2014-0041
39. Kammerer, M., Goslee, S. C., Douglas, M. R., Tooker, J. F. and Grozinger, C. M. (2021). Wild bees as winners and losers: Relative impacts of landscape composition, quality, and climate. Global Change Biology, 27, 1250–1265. doi: 10.1111/gcb.15485
40. Kapusta, P., Szarek-Łukaszewska, G., & Godzik, B. (2014). Present and Past Deposition of Heavy Metals in Poland as Determined by Moss Monitoring. Polish Journal of Environmental Studies, 23(6), 2047–2053. doi:10.15244/pjoes/27812
41. Kellermann, V., & van Heerwaarden, B. (2019). Terrestrial insects and climate change: adaptive responses in key traits. Physiological Entomology, 44(2), 99–115. doi: 10.1111/phen.12282
42. Kells, A.R., Holland, J.M. & Goulson, D. (2001). The value of uncropped field margins for foraging bumblebees. Journal of Insect Conservation. 5. Р. 283–291.
43. Kholodkevich, S. V., Kuznetsova, T. V., Kirin, M. P., Smirnov I. S., Rudakova O. A., Lyubimtsev V. A., Manvelova A. B., Susloparova O. N., Perelygin V. V., & Sakharova O. A. (2020) Bioindication of the ecological state (health) of coastal waters based on the use of automatic bioelectronic systems. Pharmacy Formulas, 2(3), 64–73. doi: 10.17816/phf46438
44. Kim, H., Sun, Y., Kim, T.-Y. & Moon, M.-J. (2020). Biodiversity monitoring for selection of insect and spider bioindicators at local organic agricultural habitats in South Korea. Entomological Research, 50, 493–505. doi: 10.1111/ 1748-5967.12469
45. Korbych, N.M. Vplyv zminy klimatu na rozvytok haluzi bdzhilnytstva [Impact of climate change on the development of the beekeeping industry]. Ekolohichni problemy navkolyshnoho seredovyshcha ta ratsionalnoho pryrodokorystuvannia v konteksti staloho rozvytku : materialy IV mizhnarodnoi naukovo-praktychnoi konferentsii do dnia pamiati doktora silskohospodarskykh nauk, profesora Pylypenka Yuriia Volodymyrovycha, October 21-22, 2021, Kherson, 2021, 141–143. Access mode: 6789/7731/
46. Korzh, A. P. (2013). Pyrrhocoris apterus as a bioindicator of the environmental state. The Journal of V.N. Karazin Kharkiv National University. Series: biology, 17(1056), 110–114.
47. Kryvyi, V. & Reuta, N. (2011). Ekolohichni aspekty pidvyshchennia vrozhainosti entomofilnykh kultur z vykorystanniam peretynchastokrylykh komakh [Ecological aspects of increasing the yield of entomophilic crops using hymenoptera insects]. Stan ta perspektyvy vyrobnytstva, pererobky i vykorystannia produktsii tvarynnytstva: materialy VIII mizhnarodnoi naukovoi konferentsii studentskoi ta uchnivskoi molodi, Kamyanets-Podilsky, November 23, 2021 Podolsky DATU. handle/ 123456789/7286/
48. Kryvyi, V. V. (2021). Vykorystannia komakh porody ruda osmiia, yak pryrodnoho opyliuvacha sadiv v umovakh fermerskykh hospodarstvakh [Use of ore insects Osmiya as a natural pollinator of gardens in farms]. Suchasna nauka: stan ta perspektyvy rozvytku: materialy IV Vseukrainskoi naukovo-praktychnoi konferentsii molodykh vchenykh z nahody Dnia pratsivnyka silskoho hospodarstva (Kherson, November 17, 2021). Kherson, 168–169.
49. Kunakh, O. M., & Fedyay, I. O. (2020). Are Heteroptera communities able to be bioindicators of urban environments? Biosystems Diversity. 28, 2. doi: 10.15421/012025
50. Lavrenko, S. O., Lavrenko, N.M., Maksymov, D. O., Maksymov, M. V., Didenko, N. O. & Islam, K. R. (2021). Variable tillage depth and chemical fertilization impact on irrigated common beans and soil physical properties. Soil and Tillage Research, 212, August 2021, 105024.
51. MacDonald, D.W. & Johnson, P.J. (2000). Farmers and the custody of thecountryside: trends in loss and conservation of non-productive habitats 1981-1998. Biological Conservation. 94. Р. 221–234.
52. Mahmoud, A. M., & Riad, A. S., (2020). Ecological studies on some aquatic insects in the Damietta branch, River Nile of Egypt as bioindicators of pollution. Egyptian Journal of Aquatic Biology and Fisheries, 24(4), 57–76. doi: 10.21608/ejabf.2020. 95322
53. Malovanyy, M., Korbut, M., Davydova, I., & Tymchuk, I. (2021). Monitoring of the Influence of Landfills on the Atmospheric Air Using Bioindication Methods on the Example of the Zhytomyr Landfill, Ukraine. Journal of Ecological Engineering, 22(6), 36–49. doi:10.12911/22998993/137446
54. Marshall, E.J.P. & Moonen, A.C. (2002). Field margins in northern Europe: their functions and interactions with agriculture. Agriculture, Ecosystems & Environment. 89. Р. 5–21.
55. Maxim, L. & van der Sluijs, J.P. (2013). Seed-dressing systemic insecticides and honeybees. In: European Environment Agency, ed. Late lessons from early warnings: science, precaution, innovation. 1. Copenhagen: European Environment Agency (EEA),. Р. 401–438.
56. McGeoch, M. A. (2014) Insects and bioindication: theory and progress. 128-144. /McGeoch, M. A. Insect conservation biology. Edited by Stewart, A. J. A., New, T. R., Lewis, O. T. Centre for Invasion Biology, Department of Conservation Ecology and Entomology, University of Stellenbosch, Matieland, South Africa. doi: 10.1079/9781845932541.0144
57. Mikheev, A. O. Bdzholy yak indykatory chystoty dovkillia [Bees as indicators of environmental cleanliness] Bukovynskyi derzhavnyi medychnyi universytet, 20.05.2021. blog/bdzholy-yak-indykatorychystoty-dovkillya/
58. Morandin, L.A. & Kremen, C. (2013). Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecological Applications. 23. Р. 829–839.
59. Nikinmaa, M. (2014). Bioindicators and Biomarkers. An Introduction to Aquatic Toxicology, Academic Press, Oxford. 147–155. doi: 10.1016/B978-0-12-411574-3.00012-8
60. Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. (2014). Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science. 346. Р. 360–362.
61. Ovdienko, A. M., Ovdienko, K. T., & Korbych, N. M. (2020). Bdzhilnytstvo Ukrainy: vyrobnytstvo ta eksport [Beekeeping of Ukraine: production and export] Tavriiskyi naukovyi visnyk. Seriia: Silskohospodarski nauky, 116(2), 123–129. doi: 10.32851/2226-0099.2020.116.2.18
62. Palmer, M.J., Moffat, C., Saranzewa, N., Harvey, J., Wright, G.A. & Connolly, C.N. (2013). Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nat Commun. 4. 1634.
63. Parikh, G., Rawtani, D., & Khatri N. (2021) Insects as an Indicator for Environmental Pollution, Environmental Claims Journal, 33(2), 161–181, doi: 10.1080/10406026.2020.1780698
64. Potts, S.G., Roberts, S.P.M. & Dean, R. (2009). Declines of managed honey bees and beekeepers in Europe. Journal of Apicultural Research. 49. Р. 15–22.
65. Quigley, T. P., Amdam, G. V., & Harwood, G. H. (2019). Honey bees as bioindicators of changing global agricultural landscapes. Current Opinion in Insect Science, 35, 132–137. doi: 10.1016/j.cois.2019.08.012
66. Radović, A., Nikolić, D., Cerović, R., Milatović, D., Rakonjac, V. and Bakić, I. (2020). The effect of temperature on pollen germination and pollen tube growth of quince cultivars. Acta Hortic. 1289, 67–72.
67. Razanov, S. F., Nedashkivsky, V. M., & Verheli, S. I. (2020). Vplyv temperaturnykh parametriv i tryvalosti tsvitinnia ripaku ozymoho na produktyvnist bdzholynykh simei [The influence of temperature parameters and the duration of flowering of winter rape on the productivity of bee colonies] Tekhnolohiia vyrobnytstva i pererobky produktsii tvarynnytstva: zb. nauk. prats. Bila Tserkva, 2, 97–102. doi: 10.33245/2310-9289-2020-158-2-97-102
68. Robinson, R.A. & Sutherland, W.J. (2002). Post-war changes in arable farming and biodiversity in great Britain. Journal of Applied Ecology. 39, 157–176.
69. Ryndevich, S. K., Lukashuk, А. О., Zemoglyadchuk, А. V., Токаrchuk, О. V. & Baitchorov, V. M. (2020). Nasekomye bioindikatory (Insecta: Ephemeroptera, Odonata, Plecoptera, Hemiptera, Coleoptera, Megaloptera, Trichoptera) i kriterii nenarushennyh vodnyh jekosistem Belarusi [Insects-Bioindicators (Insecta: Ephemeroptera, Odonata, Plecoptera, Hemiptera, Coleoptera, Megaloptera, Trichoptera) And Criteria For Intact Of Water Ecosystems Of Belarus] Vestn. BarGU. Ser. Biologicheskie nauki. Sel’skokhozyaystvennye nauki.), 8, 99–117. Access mode: 123456789 /6736
70. Sarro, E., Penglin Sun, K., Mauck Damaris, R.-A., Naoki, Y. S., & Hollis, W. (2021). An organizing feature of bumble bee life history: worker emergence promotes queen reproduction and survival in young nests, Conservation Physiology, 9, 1, 685–688. doi:10.1093/conphys/coab047
71. Satti, A.A. & Bilal, N.A. (2012). The major predators associated with lucerne crop at El-Gorair scheme in Northern Sudan. International Journal of Science Innovations and Discoveries. 2. 567–572.
72. Skorbiłowicz1 E., Skorbiłowicz M., & Cieśluk, I. (2018). Bees as Bioindicators of Environmental Pollution with Metals in an Urban Area. Journal of Ecological Engineering. 19(3), 229–234. doi:10.12911/22998993/85738
73. Sobol, O. M. Klimatychni zminy ta problemy vedennia koniarstva v umovakh pivdnia Ukrainy na prykladi Khersonskoi oblasti [Climatic changes and problems of horse breeding in the south of Ukraine on the example of Kherson region] Klimatychni zminy ta silske hospodarstvo. Vyklyky dlia ahrarnoi nauky ta osvity: zbirnyk tez IV Mizhnarodnoi naukovopraktychnoi konferentsii (Kyiv, April 21, 2021), 59–62.
74. Solomon, R.A.J. & Rao, P.S. (2002). Pollination Ecology and Fruiting behaviour in Acacia sinuate (Lour.) Merr. (Mimosaceae) a valuable non-timber forest plant species. Current Science. 82(12). 1466–1471.
75. Somanathan, H. & Borges, R.M. (2001). Nocturnal pollination by the carpenter bee Xylocopa tenuiscapa (Apida) and the effect of floral display on fruit set of Heterophragma quadriloculare (Bignoniaceae) in India. Biotropica. 33. Р. 78-89.
76. Stone, G.N., Raine, N.E., Prescott, M. & Willmer, P.G. (2002). Pollination ecology of Acacias (Fabaceae, Mimosoideae). Australian Systematic Botany. 16. 103–118.
77. Stone, G.N., Wilmer, P.G., Rowe, J.A., Nyundo, B. & Abdallah, R. (1999). The pollination ecology of Mkomazi Acacia species. In ‘Mkomazi, the ecology, biodiversity and conservation of a Tanzanian savanna’. (Eds MJ Coe, N McWilliam, GN Stone, M Packer). Р. 337–360. (The Royal Geographical Society: London).
78. Tandon, R., Shivanna, K.R. & Ram, M.H.Y. (2001). Pollination biology and breeding system of Acacia Senegal. Botanical J. Linnean Society. 135. 251–262.
79. Tennekes, HA & Sánchez-Bayo, F. (2013). The molecular basis of simple relationships between exposure concentration and toxic effects with time. Toxicology. 309. Р. 39–51.
80. Thomson, D.M. (2016). Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources. Ecology Letters.19. 1247–1255.
81. Tibcherani, M., Nacagava, V. A. F., Aranda, R., & Mello, R. L. (2018). Review of Ants (Hymenoptera: Formicidae) as bioindicators in the Brazilian Savanna. Sociobiology, 65(2), 112–129. doi: 10.13102/ sociobiology. v65i2.2048
82. Tran, L., McKee, Ch. G., Ortega Polo, R., Newman, T., Lansing, L., Griffiths, J. S., Bilodeau, G. J., Rott, M., & Guarna, M. M. (2022). Honey bees as biomonitors of environmental contaminants, pathogens, and climate change. Ecological Indicators, 134. doi: 10.1016/j.ecolind.2021.108457
83. Tyrbik, K. (1993). Pollination, breeding system and seed abortion in some African Acacia species.Botanic. J. Linnean Society. 112. 107–137.
84. Vidal, M.G., Dejon, D., Wien, H.C. & Morse, R.A. (2010). Pollination and fruit set in pumpkin (Cucurbita pepo) by honey bees. Review of Brasil Botany. 33, 107–113.
85. Vorobyov, N., Bakaeva, T., Poturaeva, D., & Kozlov T. (2022). The determination of the integral biosphere compatibility indicator of urban areas by bioindication’s methods. IOP Conference Series: Materials Science and Engineering, 698, 7. doi:10.1088/1757-899X/698/7/077055
86. Whitehorn, P.R., O’Connor, S., Wackers, F.L. & Goulson, D. (2012). Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science. 336. 351–352.
87. Williams, C.B. (1961). Studies in the effect of weather conditions on the activity and abundance of insect populations. Philosophical Transactions of the Royal Society B: Biological Sciences. 244. Р. 331–378.
88. Wilson, R. J., Davies, Z. G. & Thomas, C. D. (2014) Insects and climate change: processes, patterns and implications for conservation. 227-245. /McGeoch, M. A. Insect conservation biology. Edited by Stewart, A. J. A., New, T. R., Lewis, O. T. Centre for Invasion Biology, Department of Conservation Ecology and Entomology, University of Stellenbosch, Matieland, South Africa. DOI 10.1079/9781845932541.0144
89. Woodell, S.R.J. (1978). Directionality in bumblebees in relation to environmental factors. In: The Pollination of Flowers by Insects (ed. Richards AJ), Р. 31–39. Academic Press, London.
90. Wyatt, R. (1981). The reproductive biology of Asclepias tuberosa. II. Factors determining fruit-set. New Phytologist. 86. Р. 375–385.
91. Yusuf, Z. H. (2020). Phytoplankton as bioindicators of water quality in Nasarawa reservoir, Katsina State Nigeria. Acta Limnologica Brasiliensia, 32, e4. doi:10.1590/S2179-975X3319
92. Zhang, T.F., Duan, Y.W. & Liu, J.Q. (2006). Pollination ecology of Aconitum gymnandrum (Ranunculaceae) at two sites with different altitudes. Acta Phytotaxonomica Sinica. 44. Р. 362–370.
93. Zhuykov, O., Burdiug, O., Ushkarenko, V., Lavrenko, S. & Lavrenko, N. (2020). Photosynthetic activity and productivity of sunflower hybrids in organic and traditional cultivation technologies. AgroLife Scientific Journal. Journal, 9(1), 374-381. Р. 374-381.
How to Cite
Lavrenko, S. O., Sobol, O. M., Korbych, N. M., & Kryvyi, V. V. (2022). DIRECTIONS AND PROSPECTS FOR THE USE OF POLLINATING INSECTS FOR BIOINDICATION OF THE ECOSYSTEMS AND CLIMATE CHANGE SITUATION UNDER THE SOUTH OF UKRAINE CONDITIONS. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 47(1), 80-90.