WOOD AND BARK DENSITY OF ROBINIA PSEUDOACACIA BRANCHES OF THE RAPIRIAN STEPPE OF UKRAINE
Abstract
The conformity of black locust stands to edaphic and climatic conditions of Riparian Steppe, their utilitarian functions allow to consider this forestforming species expedient for creation of forest plantations in steppe natural zone of Ukraine. In order to comprehensively assess the resource, environmental and energy potential of trees and stands of the Riparian Steppe of Ukraine, it is mandatory to assess their bioproductivity, which is calculated using the density of components of aboveground phytomass. In the process of studying the basic and natural density of the aboveground phytomass components of the branches of 20 model black locust trees were cut down. The measurements of trees were made and their biometric indicators were determined. The density indexes of structural components of aboveground phytomass of black locust trees in freshly and absolutely dry states were calculated according to the method of P. Lakyda. The natural and basic densities of wood, bark and wood in the bark of the branches of black locust and the main statistics for these parameters are determined. It is established that the sets of indicators of basic and natural density of all structural components of branches have a distribution similar to normal. The values of the correlation coefficients between the density of wood and bark of branches with the iometric indices of black locust trees, which indicate their weak, mostly direct relationship, are given. The paper presents a graphical interpretation of changes in the basic density of the structural components of the phytomass of branches by age, diameter and height of trees. It is established that with increasing age, diameter at breast height and tree height of black locust trees there is an increase in the absolute values of both natural and basic density of wood branches and branches in the bark. The range of values of natural density of branches is rather wide: the density of wood of branches – 684–987 kg·(m3)-1; the density of bark of branches 473–703 kg·(m3)-1; the density of branches in the bark – 658–909 kg·(m3)-1. The values of the branches basic density vary within the following limits: the density of wood – 390–611 kg·(m3)-1; crust density 230–429 kg·(m3)-1; the density of branches in the bark is 408–588 kg·(m3)-1. Mathematical models of the dependence of the qualitative characteristics of the structural components of the branches of black locust trees on the main biometric indicators have been developed. They can be used to assess the biotic productivity of black locust stands.
References
2. Bussotti, F., Pollastrini, M., Killi, D., Ferrini, F., & Fini, A. (2014). Ecophysiology of urban trees in a perspective of climate change. Agrochimica 58, 247–268.
3. Cintas, O., Berndes, G., Cowie, A.L., Egnell, G., Holmström, H., Marland, G., & Ågren, G.I. (2017). Carbon balances of bioenergy systems using biomass from forests managed with long rotations: Bridging the gap between stand and landscape assessments. Global Change Biology Bioenergy. doi: 10.1111/gcbb.12425
4. Fajardo, А. (2016). Wood density is a poor predictor of competitive ability among individuals of the same species. Forest Ecology and Management, 372, 217– 225. doi: 10.1016/j.foreco.2016.04.022
5. Favero, A., Mendelsohn, R. & Sohngen, B. (2017). Using forests for climate mitigation: sequester carbon or produce woody biomass?. Climatic Change 144, 195–206. doi: 10.1007/s10584-017-2034-9
6. Fingerman, K.R., Nabuurs, G.J., Iriarte, L., Fritsche, U.R., Staritsky, I., Visser, L., Mai-Moulin, T. & Junginger, M. (2019). Opportunities and risks for sustainable biomass export from the south-eastern United States to Europe. Biofuels, Bioproducts and Biorefining, 13(2), 281–292. doi: 10.1002/bbb.1845
7. Giroud, G., Begin, J., Defo, M., & Ung, C. (2017). Regional variation in wood density and modulus of elasticity of Quebec’s main boreal tree species. Forest Ecology and Management, 400, 289–299. doi:10.1016/j.foreco.2017.06.019
8. Goussanou, C.A., Guendehou, S., Assogbadjo, A.E., Kaire, M., Sinsin, B., & Cuni-Sanchez, A. (2016). Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest. Silva Fennica, 50(2), 22. doi:10.14214/sf.1474
9. Gritsan, Y. I., Sytnyk, S. A., Lovynska, V. M., & Tkalich, I. I. (2019). Climatogenic reaction of Robinia pseudoacacia and Pinus sylvestris within Northern Steppe of Ukraine. Biosystems Diversity, 27(1), 16–20. doi:10.15421/011902
10. Huang, J.H., Li, G.Q., Jie, L., Zhang, X.Q., Yan, M.J., & Du S. (2017). Projecting the range shifts in climatically suitable habitat for chinese sea buckthorn under climate change scenarios. Forests, 9 (1), 1–9. doi:10.3390/f9010009
11. Koliada, N. A., & Koliada, A. S. (2018). Robinia pseudoacacia L. (Fabaceae Lindi) na yuhe Dalneho Vostoka Rossyy [Robinia pseudoacacia L. (Fabaceae Linda) in the south of the Far East of Russia]. Rossyiskyi Zhurnal Byolohycheskykh Ynvazyi, 2, 14–19.
12. Lakyda, P. I. (2002). Fitomasa lisiv Ukrainy [Forest phytomass of Ukraine]. Zbruch. Ternopil.
13. Lakyda, P. I., & Yudytskyi, Ya. A. (1993). Otsinka serednoi shchilnosti fraktsii derevnoho stovbura [Estimation of average density of tree trunk fractions]. Lisovyi zhurnal, 1(6), 25–26.
14. Lloret, F., Jaime, L.A., Margalef-Marrase, J., Pérez-Navarro, M.A., Batllori, E. (2022).Short-term forest resilience after drought-induced die-off in Southwestern European forests. Science of The Total Environment, 806 (4),150940. doi:10.1016/j.scitotenv.2021.150940
15. Lobzhanidze, Je. D. (1961). Kambij i formirovanie godichnyh kolec drevesiny [Cambium and tree-ring formation]. Tbilisi: AN GSSR.
16. Lohmatov, N. A. (1985). Raznoobrazie beloakacievyh nasazhdenij i nekotorye obshhie zakonomernosti ih razvitija v stepnoj zone USSR [Diversity of black locust plantations and some general patterns of their development in the steppe zone of the Ukrainian SSR]. Lesovodstvo i agrolesomelioracija, 78, 47–51.
17. Lovynska, V. M., Sytnyk, S. A., Hrytsan, Yu. I., Rossykhina-Halycha, H. S., Mamrak, O. O., & Piskokha, V.M. Yakisni pokaznyky fitomasy krony derev sosny zvychainoi Pivnichnostepovoi zony Ukrainy [Qualitative indicators of phytomass of the crown of pine trees of the Northern Steppe of Ukraine]. Ahrarni innovatsii, 9, 36–40. doi:10.32848/agrar.innov.2021.9.5
18. Machado, J. S., Louzada, J. S., Santos, A., Nunes, L., Anjos, O., Rodrigues, J., & Simões, R. (2014). Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.). Materials & Design, 56, 975–980. doi:10.1016/j.matdes.2013.12.016
19. McEwan, A., Marchi, E., Spinelli, R., & Brink, M. (2020). Past present and future of industrial plantation forestry and implication on future timber harvesting technology. J. Forestry Res. 31(2), 339-351. doi:10.1007/s11676-019-01019-3. 20. Polubojarinov, O. I. (1976). Plotnost’ drevesiny [Wood density]. Moskva : Lesnaja promyshlennost’.
21. Pretzsch, H., Biber, P., Schütze, G., & Bielak, K. (2014). Changes of forest stand dynamics in Europe. Facts from long-term observational plots and their relevance for forest ecology and management. For. Ecol. Manage., Forest Observat. Studies: Data Sources for Analysing Forest Struct. Dyn.” 316, 65–77. doi: 10.1016/j.foreco. 2013.07.050
22. Roaki, I., Sillett, S., & Carroll, A., (2017). Crown dynamics and wood production of Douglas-fir trees in an old-growth forest. Forest Ecology and Management, 384: 157–168. doi: 10.1016/j.foreco.2016.10.047
23. Schweinle, J., Köthke, M., Englert, H., & Dieter, M. (2018). Simulation of forest-based carbon balances for Germany: a contribution to the “carbon debt” debate. WIREs Energy Environ., 7(1), 1–15, doi: 10.1002/wene.260
24. Shvidenko, A., Lakyda, P., & McCallum, I. (2008). Carbon, Climate and Managed Land in Ukraine: Integrated Data and Models of Land Use for NEESI (Forest Sector). Report on work of the International Institute for Applied System Analysis. Laxenburg, Austria.
25. Sitzia, T., Cierjacks, A., de Rigo, D., & Caudullo, G. (2016). Robinia pseudoacacia in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., & Mauri, A. (Eds.). European Atlas of Forest Tree Species. Luxembourg: Publication office of the European Union.
26. Sytnyk, S., Lovynska, V., Lakyda, P., & Maslikova, K. (2018). Basic density and crown parameters of forest forming species within Steppe zone in Ukraine. Folia Oecologica, 45, 82–91. doi: 10.2478/foecol-2018-0009
27. Vítková, M., Müllerovа, J., Sаdlo, J., Pergl, J., & Pyšek, P. (2017). Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. Forest Ecology and Management, 384, 287–302. doi: 10.1016/j.foreco.2016.10.057
28. Vítková, M., Tonika, J., & Müllerová, J. (2015). Black locust – successful invader of a wide range of soil conditions. Science of the Total Environment, 505, 315–328. doi: 10.1016/j.scitotenv.2014.09.104
29. Walkovszky, A. (1998). Changes in phenology of the locust tree (Robinia pseudoacacia L.) in Hungary. International Journal of Biometeorology, 41, 155–160. doi: 10.1007/s004840050069
30. Wareing, P., & Roberts, D. (1956). Photoperiodic control of cambial activity in Robinia pseudoacacia L. New Phytologist, 55, 356–366. doi: 10.1111/j.1469- 8137.1956.tb05295.x
31. Zimmermann, M. H., & Brown, C. L. (1989). Trees: structure and function. Berlin- Heidelberg-New-York: Springer-Verlag.