TROPHIC AND PHYTOHORMONAL DETERMINANTS OF ONTOGENESIS IN VITRO

Keywords: determinants, trophic determination, phytohormones, nutrients, mineral nutrients, cytokinins, auxins

Abstract

The purpose of this article is to establish trophic and phytohormonal determinants of ontogenesis in vitro. Microclonal reproduction as a biotechnological process involves the use of plant objects: explants, regenerants, donor plants. In each of these objects, at the level of nucleic acids, genetic information about the ontogenesis of a whole organism is recorded in situ. To direct the life cycle of objects according to technological or scientific needs, physical, trophic and phytohormonal determinants are used. Under the influence of determinants, gene expression occurs selectively in meristem and other tissues. Thanks to this, development takes place along a certain path with the limitation of others. During in vitro reproduction, plant organisms undergo double reformatting of determinants. The first time, it happens during introduction to aseptic conditions, and the second – during post-aseptic adaptation. Among the trophic determinants, the main ones are mineral components and synthetic carbohydrates added to artificial nutrient media. The influence of macro- and microelements during microclonal reproduction, as well as under normal conditions, is subject to the laws of nutrition: autotrophy of plant organisms; the minimum; the maximum Mineral elements affect the ontogenesis of regenerants not only through their quantitative content, but also their form, acidity of the solution, interaction with other components of the environment. Exogenous carbohydrates, the process of synthesis of endogenous carbohydrates is also a determining factor. In particular, there is an effect on rhizogenesis and the formation of storage organs.With a high content of carbohydrates in the environment, regenerants develop according to the mixotrophic type of nutrition with the dominance of the heterotrophic fate. It is heterotrophic nutrition in combination with stimulating phytohormones and a low carbon dioxide content that is the basis of the rejuvenation of plant objects. One of the visual signs of youth is the simple shape of leaf plates, needles. Among the determinants with phytohormonal activity, synthetic analogues of hormones are the most common, with predominance according to the Skoog and Miller rule at different stages: at the stage of cytokinin multiplication; at the stage of rhizogenesis – postaseptic adaptation of auxin. Cytokinins have a phytotoxic effect that can accumulate and be transmitted from generation to generation. Its manifestation consists in hyperhydration of tissues, weak or absent rhizogenesis, loss during subcultivation of regeneration potential. To improve the restart of the determinant system, it is effective to introduce regenerants into a state of rest. In this case, meristems form a system of determinants that is appropriate for new, postaseptic conditions.

References

1. Afreen-Zobayed, F., Zobayed, S. M. A., Kubota, C., Kozai, T., & Hasegawa, O. (1999). Supporting material affects the growth and development of in vitro sweet potato plantlets cultured photoautotrophically. In Vitro Cell. Dev. Biol. Plant, 35, 470–474.
2. Andrievsky, V., Vrublevsky, A., Filipova, L., Matskevych, V., & Matskevych, O. (2019). The problems of hazelnut microclonal propagation. Agrobiology. 1 (149), 74–84. Ассess mode: https://agrobiologiya.btsau.edu.ua/en/content/problems-hazelnut-microclonal-propagation (in Ukrainian).
3. Bacchetta, L., Aramini, M., Bernardini, C., & Rugini, E. (2008). In vitro propagation of traditional Italian hazelnut cultivars as a tool for the valorization and conservation of local genetic resources. Hortscience. 43(2), 562–566. doi: 10.21273/HORTSCI.43.2.562
4. Bacchetta, L., Rovira, M., Tronci, C., Aramini, M., Drogoudi, P., & Silva, A. et al. (2015). A multidisciplinary approach to enhance the conservation and use of hazelnut Corylus avellana L. Genet. Resour. Crop Evol. 62, 649–663. doi: 10.1007/s10722-014-0173-7
5. Baimukhametova, E.A., & Kuluev, B.R. (2020). Darkening of plant tissues during in vitro cultivation and methods for its prevention. Biotekhnologiya, 36 (2), 26-42. doi: 10.21519/0234-2758-2020-36-2-26-42
6. Bakhtaulova, A. S., & Karipbayeva, R. K. (2020). Cytostructure of the radial parenchyma of annual shoots of wild species of Meyer’s currant (Ribes Meyeri Maxim.). IOP Conference Series: Earth and Environmental Science, 548 (7), art. no. 072021. doi: 10.1088/1755-1315/548/7/072021
7. Batukaev, A., Kornatskyi, S., Minkina, T., Barbashev, A., & Sushkova, S. (2019). In vitro microclonal propagation of strawberries and ex vitro adaptation. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 19 (6.1), 737–746. Ассess mode: doi: 10.5593/sgem2019/6.1/S25.095
8. Batukaev, A. A., Bamatov, I. M., & Khadzhimuradova, E. A. (2018). The system of production of healthy planting material for potato under the conditions of the Chechen Republic Journal of Pharmaceutical Sciences and Research, 10 (1), 106–109.
9. Batukaev, A. A., Sobralieva, E. A., Palaeva, D. O., & Batukaev, M. S. (2021). Improvement of the hormonal and mineral composition of nutrient media used for in vitro regeneration of grape plants IOP Conference Series: Earth and Environmental Science, 659 (1), art. no. 012086. doi: 10.1088/1755-1315/659/1/012086
10. Branzanti, B., Gianinazzi-Pearson, V., & Gianinazzi, S. (1992). Influence of phosphate fertilization on the growth and nutrient status of micropropagated apple infected with endomycorrhizal fungi during the weaning stage. Agronomie, EDP Sciences, 12(10), 841–845.
11. Caboche, M. (1987). Nitrogen, carbohydrate and zinc requirements for the efficient induction of shoot morphogenesis from protoplast-derived colonies of Nicotiana Rlumbaginifolia. Plant Cell, Tisssue and Organ Culture, 8, 197–206.
12. Chornobrov, O., & Bilous, S. (2021). In vitro plant regeneration of Christmas cactus (Schlumbergera truncata (Haw.) Moran) by indirect morphogenesis. Folia Forestalia Polonica, Series A, 63 (1), 68–73. doi: 10.2478/ffp-2021-0007
13. Christofi, M., Pavlou, A., Lantzouraki, D., Tsiaka, T., Myrtsi, E., Zoumpoulakis, P., Haroutounian, S., Mauromoustakos, A., Biliaderis, C., & Manganaris G. (2022). Profiling carotenoid and phenolic compounds in fresh and canned fruit of peach cultivars: Impact of genotype and canning on their concentration. Journal of Food Composition and Analysis. 114. doi: 10.1016/j.jfca.2022.104734
14. Damiano, C., Caternaro, J., Giovinazzi, J., Fratarelli, A., & Caboni, E. (2005). Micropropagation of hazelnut (Corylus avellana L.). Acta Hortic. 686(1): 221–226.
15. Danilova, E. D., Medvedeva, Y. V., & Efimova, M. V. (2018). The effect of chloride salinity on growth and physiological processes in mid-ripening varieties of Solanum tuberosum plants. Vestnik Tomskogo Gosudarstvennogo Universiteta, Biologiya, (44), pp. 158–171. doi: 10.17223/19988591/44/9
16. Demidenko, E., Gukov, G., & Berseneva, S. (2019). Phytopathogenic mycobiota of the Far Eastern species of the genus Aristolochia L. in the culture in vitro. IOP Conference Series: Earth and Environmental Science, 395 (1), art. no. 012030. doi: 10.1088/1755-1315/395/1/012030.
17. Demidenko, E.N., Egorova, L.N., Gafitskaya, I.V., & Nakonechnaya, O.V. (2019). Phytopathogenic micromycetes on the explants of the aristolochia manshuriensis, A. contorta, and A. clematitis in vitro. Mikologiya I Fitopatologiya, 53 (6), 379–383. doi: 10.1134/S0026364819060059
18. Desjardins, Y., Hdider C., & , Riek, J. (1995). Carbon nutrient in vitro regulation and manipulation of carbon assimilation in micropropagation system. In: Aitken-Christie, J.; Kozai, T.; Smith, & M. A. L., eds. Automation and environmental control in plant tissue. Dordrecht, The Netherlands: Kluwer Academic Publishers, 441–465.
19. Drobyk, N. M., Hrytsak, L. R., Mel’Nyk, V. M., Kravets, N. B., Konvalyuk, I. I., Twardovska, M. O., & Kunakh, V. A. (2015). In vitro manipulation and propagation of gentiana l. Species from the ukrainian flora. The Gentianaceae. Vol. 2: Biotechnology and Applications, 45–79. doi: 10.1007/978-3-642-54102-5_2
20. Dubetska, M. (2020). Almond : restoration of powerful roots. Horticulture and viticulture. Technologies and innovations. 3 (22), 90–93. (in Ukrainian).
21. Dzerina, B., Sisenis, L., Neimane, U., Baumanis, I., & Kapostins, R. (2017). Intra-annual height growth of silver birch (Betula pendula) in latvia. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining. Ecology Management, SGEM, 17 (33), pp. 593-600. doi: 10.5593/sgem2017H/33/S14.074
22. Erst, A. A., Zheleznichenko, T. V., Novikova, T. I., Dorogina, O. V., & Banaev, E.V. (2014). Ecological and geographic variability of Hedysarum theinum and features of its propagation in vitro. Contemporary Problems of Ecology, 7 (1), 67. doi: 10.1134/S1995425514010053
23. Erturk, H., & Walker, P. N. (2000). Effect of light, carbon dioxide, and hormone levels on transformation to photoautotrophic of sugarcane shoots in micropropagation. Trans, 43, 147–151.
24. Filipova, L. M., Matskevych, V. V., Karpuk, L. M., & Pavlichenko, A. A. (2021). Peculiarities of assimilation of macroelements on acidic soil [Osoblyvosti zasvoiennia makroelementiv na kyslomu grunti]. «Innovative technologies in agronomy, land management, electric power, forestry and horticulture»: materials of the international scientific and practical conference, October 21, 2021. Bilа Tserkva National University of Science and Technology. 16–18 (in Ukrainian).
25. Filipova, L. M., Matskevych, V. V., & Matskevych, O. V. (2020). Prospects of almond reproduction in vitro. Agrarian education and science: achievements and development prospects: «Innovative technologies in agronomy, land management, forestry and horticulture» (Bila Tserkva, October 30, 2020). Bila Tserkva: BNAU, 26–28.
26. Filipova, L. M., Matskevych, V.V., Karpuk, L.M., Stadnyk, A.P., Andriievsky, V.V, Vrublevsky, A.T., Krupa, N.M. & Pavlichenko, A.A. (2019). Features of Rooting Paulownia in vitro. Egypt.J.Chem. 72nd. 57–63 (in Ukrainian).
27. Filipova, L., & Matskevych, V. (2013). Formation of phenolic substances by regenerants during the first subcultivations concerning the conditions and plant species. Journal of Lviv National Environmental University: agronomy. 17(2), 233–239 (in Ukrainian).
28. Fokina, A.V., Satarova, T.M., Smetanin, V.T., & Kucenko, N.I. (2018). Optimization of microclonal propagation in vitro of oregano (Origanum vulgare) [Оптимізація мікроклонального розмноження in vitro материнки звичайної (Origanum vulgare). Biosystems Diversity, 26 (2), 98–102. doi: 10.15421/011815
29. Gafitskaya, I.V., Orlovskaya, I.Y., Nakonechnaya, O.V., & Nesterova, S.V. (2020). Microclonal propagation of dasiphora fruticosa (Rosaceae). Botanica Pacifica, 9 (1), 85–90. doi: 10.17581/BP.2020.09112
30. Gammoudi, N., Nagaz, K., & Ferchichi, A. (2022). Establishment of optimized in vitro disinfection protocol of Pistacia vera L. explants mediated a computational approach: multilayer perceptron–multi−objective genetic algorithm. BMC Plant Biol. 22, 324 (2022). doi: 10.1186/s12870-022-03674-x
31. Hamburh, K. Z., Rekoslavskaia, N. Y., & Shvetsov, S. H. (1990). Auksiny v kulturah tkanej i kletok rastenij Auksiny v kulturah tkanej i kletok rastenij: [Auxins in plant tissue and cell cultures Auxins in plant tissue and cell cultures] monograph. USSR Academy of Sciences. Siberian Branch, Siberian Institute of Plant Physiology and Biochemistry. Novosibirsk: Science, Siberian Branch, 243 (in Russian).
32. Hand C., Maki, S., & Reed B. (2014). Modeling optimal mineral nutrition for hazelnut micropropagation. Plant Cell, Tissue and Organ Culture. 119, 411–425. doi: 10.1007/s11240-014-0544-y
33. Hirose, N., Takei, K., & Kuroha, T. et al. (2008). Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 59 (1), 75–83.
34. Horodnii, M. M., Bikin, O. V., & Nahaievska, L. M. (2003). Agrochemistry: textbook [Ahrokhimiia : pidruchnyk]. Kyiv, Aleph. 786 (in Ukrainian).
35. Inisheva, L. I., Rozhanskaya, O. A., & Larina, G. V. (2019). Characteristics of horny altai peats and their biological activity in plant tissue culture Khimiya Rastitel’nogo Syr’ya, (3), 261–268. Ассess mode: doi: 10.14258/jcprm.2019035132
36. International Forestry Forum «Forest Ecosystems as Global Resource of the Biosphere: Calls, Threats, Solutions». (2020). IOP Conference Series: Earth and Environmental Science, 595 (1), 580.
37. Ishchuk, H., Shlapak, V., Ishchuk, L., Bayura, O., & Kurka, S. (2021). The introduced North American species of the genus Juglans L. in the Right-bank forest-steppe of Ukraine and their use. Trakya University Journal of Natural Sciences. 22(1), 77–92. Ассess mode: http://lib.udau.edu.ua/handle/123456789/8090
38. Ivashchuk, O. A., Fedorov, V. I., Shcherbinina, N. V., Maslova, E. V., Shamraeva, E. O., & Zhuravlev, M. D. (2018). Microclonal propagation of plant process modeling and optimization of its parameters based on neural network. Drug Invention Today, 10 (Special Issue 3), 3170–3175.
39. Karpuk, L. M., Vrublevskyi, A. T., Matskevych, V. V., Filipova, L. M., & Pavlichenko, A. A. (2022). Features of cultivation of cell suspensions of different hazelnut and walnut genotypes [Osoblyvosti kultyvuvannia klitynnykh suspenzii riznykh henotypiv funduka ta horikha hretskoho]. Breeding, genetics and technologies of growing agricultural crops: materials of the 10th international scientific and practical conference of young scientists and specialists (Tsentralne village, April 29, 2022). NAAS, MIP named after V.M. Crafts, Ministry of Agrarian Policy and Food of Ukraine, Institute of Expertise of Plant Varieties. 48. (in Ukrainian).
40. Kester, D.E., Tabachnik, L. & Negueroles, J. (1977). Use of micropropagation and tissue culture to investigate genetic disorders in almond cultivars. Acta Hortic, 78, 95–102. doi: 10.17660/ActaHortic.1977.78.10
41. Khoma, Y., Khudolieieva, L., Rashydov, N., & Kutsokon, N. (2022). In vitro culture initiation and regeneration of two highly productive clones of poplar. Nova Biotechnologica et Chimica, 21 (1), art. no. e1089. doi: 10.36547/nbc.1089.
42. Kim, I., Barsukova, E., Fisenko, P., Chekushkina, T., Chibizova, A., Volkov, D., & Klykov, A. (2020). Applying methods of replication and recovery of potato microplants (Solanum tuberosum l.) in seed production. E3S Web of Conferences, 203, art. no. 02003. doi: 10.1051/e3sconf/202020302003
43. Kim, J., Mahoney, N., Chan, K., Molyneux, R., & Campbell, B. (2006). Controlling food-contaminating fungi by targeting their antioxidative stress-response system with natural phenolic compounds. Appl Microbiol Biotechnol. 70(6): 735–739. Ассess mode: https://doi.org/10.1007/s00253-005-0123-6
44. Korasick, David, A., Tara, A. Enders, & Lucia C. Strader. (2013). Auxin biosynthesis and storage forms. Journal of experimental botany 64.9, 2541–2555.
45. Kozai, T. (1988). Multiplication of potato plantlets in vitro with sugar free medium under high photosynthetic photon flux. Acta Horticulturae. 230, 121–127. doi: 10.17660/ActaHortic.1988.230.12
46. Kozai, T., Afreen, F., & Zobayed, S.M.A. (2005). Photoautotrophic (sugar-free medium) Micropropation as a New Micropropagation and Transplant Production System, 316.
47. Kozai, T., & Kubota, C. (2005). In vitro aerial environmental and their effects on growth and development of plants. In proceedings “Photoautotrophic (sugar-free medium) Micropropation as a New Micropropagation and Transplant Production System”, 31–52. doi: 10.1007/1-4020-3126-2
48. Kunakh V. A. (2005). Biotechnology of medicinal plants. Genetic and physiological and biochemical bases [Biotekhnolohiia likarskykh roslyn. Henetychni ta fizioloho-biokhimichni osnovy]. Kyiv, Logos. 730 р. (in Ukrainian).
49. Kushnir, H. P., & Sarnatska, V. V. (2005). Mikroklonalne rozmnozhennia roslyn, teoriia i praktyka [Microclonal propagation of plants, theory and practice]. K., Scientific opinion, 270 (in Ukrainian).
50. Lan, P., Li, W., & Fischer, R. (2006). Arabidopsis thaliana wild type, phol, and pho2 mutant plants different responses to exogenous cytokinins. Plant Physiol. Biochem. 44, 343–350.
51. Legkobit, M. P., & Khadeeva, N.V. (2004). Variation and morphogenetic characteristics of different Stachys species during microclonal propagation. Genetika, 40 (7), 916–924.
52. Legkobit, M. P., & Khadeeva, N. V. (2004). Variation and morphogenetic characteristics of different stachys species during microclonal propagation. Russian Journal of Genetics, 40 (7), 743–750. doi: 10.1023/B
53. Levchyk, N., Skrypchenko, N., Dziuba, O., Gajdosova, A., Liubinska, A., & Zaimenko, N. (2022). Features of morphogenesis of Аctinidia arguta leaf tissues at microclonal propagation. Journal of Microbiology, Biotechnology and Food Sciences, 12(1), e4667. doi: 10.55251/jmbfs.4667
54. Lomtatidze, N., Alasania, N., Gorgiladze, L., Meladze, R. (2018). Production of sapling material of blueberry in in vitro culture. Bulletin of the Georgian National Academy of Sciences, 12 (2), 138–144.
55. Maistrenko, G. G., & Krasnoborov, I. M. (2009). Microclonal propagation and biological features of Scrophularia umbrosa dumort. Cultured in vitro. Contemporary Problems of Ecology, 2 (6), 501–505. doi: 10.1134/S1995425509060010.
56. Matskevych, N. O., Pustovit, O. S., Vlasenko, M. Yu., & Matskevych, V. V. (2007). Peculiarities of individual potato development during clonal micropropagation [Osoblyvosti indyvidualnoho rozvytku kartopli pry klonalnomu mikrorozmnozheni]. Bulletin of Bilа Tserkva State Agrarian University. 46. 27–31 (in Ukrainian).
57. Matskevych, O. V., Filipova, L. M., Matskevych, V. V., & Andriievskyi, V. V. (2019). Pavlovniia [Рaulownia]: scientific and practical manual. Bila Tserkva: Bila Tserkva National Agrarian University, 80 (in Ukrainian).
58. Matskevych, O. V., Prykhoda, N. Iu., Mykhailiuk, N. Iu., Matskevych, V. V. (2022). Features of mineral and air nutrition of hazelnuts. Agrarian education and science: achievements and development prospects: materials of the 3rd International Scientific and Practical Conference (Bila Tserkva, March 30–31, 2022). Bila Tserkva: BNAU, 65–67.
59. Matskevych, O., Kimeichuk, I., Matskevych, V., Karpuk, L. (2022). Microclonal propagation of hazelnuts. Bulletine of Uman NUH. 1: 105–114. doi: 10.31395/2310-0478-2022-1-105-114 (in Ukrainian).
60. Matskevych, V. V. (2020). Mikroklonalne rozmnozhennia vydiv roslyn in vitro ta yikh postaseptychna adaptatsiia. Kvalifikatsiina naukova pratsia na pravakh rukopysu. Dysertatsiia na zdobuttia naukovoho stupenia doktora silskohospodarskykh nauk za spetsialnistiu 06.01.05 – «selektsiia i nasinnytstvo [Microclonal propagation of plant species in vitro and their post-septic adaptation. Qualifying scientific work on the rights of the manuscript. The dissertation on competition of a scientific degree of the doctor of agricultural sciences on a specialty 06.01.05 – «selection and seed production]. Sumy National Agrarian University of the Ministry of Education and Science of Ukraine, Sumy, 478 (in Ukrainian).
61. Matskevych, V. V., & Chechitko, I. P. (2003). Application of «one-node culture» as an element of resource-saving technology for obtaining microtubers in vitro [Zastosuvannia «kultury odnoho vuzla» yak elementu resursozberihaiuchoi tekhnolohii oderzhannia mikrobulb in vitro]. Potato farming. 32, 113–117. (in Ukrainian).
62. Matskevych, V. V., Filipova, L. M., & Andriievskyi, V. V. (2015). Photoautotrophic method of microclonal propagation of blackberry [Fotoavtotrofnyi metod mikroklonalnoho rozmnozhennia ozhyny]. Abstracts of reports of the State scientific and practical conference «Modern agrobiotechnologies and land management in Ukraine» on November 19, 2015 (Bila Tserkva), 8–9 (in Ukrainian).
63. Matskevych, V. V., Filipova, L. M., & Oleshko, O. H. (2022). Fiziolohiia i biotekhnolohiia roslyn [Physiology and biotechnology of plants]. Bila Tserkva, BNAU, 602 (in Ukrainian).
64. Matskevych, V. V., Filipova, L. M., Karpuk, L. M., & Titarenko, V. O. (2022). Biotechnological methods in nursery and breeding of paulownia [Biotekhnolohichni metody u rozsadnytstvi ta selektsii pavlovnii]. The Scientific Heritage. 83-2. Ассess mode: https://cyberleninka.ru/article/n/biotehnologichni-metodi-u-rozsadnitstvi-ta-selektsiyi-pavlovniyi (date of application: 26.08.2022). (in Ukrainian).
65. Matskevych, V.V., Taran O. P., & Reshetnyk H. V. (2013). Polymorphism of leaves and the formation of assimilating organs in potato plants in vitro depending on the content of carbohydrates in the nutrient medium [Polimorfizm lystkiv ta formuvannia asymiliuiuchykh orhaniv u roslyn kartopli in vitro v zalezhnosti vid vmistu vuhlevodiv u pozhyvnomu seredovyshchi]. Potato production of Ukraine: Scientific and production journal. 3/4, 17–26 (in Ukrainian).
66. Medvedieva, T. V., Triapitsyna, N. V., & Riabyi, V. Ia. (2012). Vplyv heleutvoriuvachiv ta inhibitoriv etylenu na kultyvuvannia pidshchepy vyshni Hizela 5 v umovakh in vitro [The effect of gelling agents and ethylene inhibitors on the cultivation of Gisela 5 cherry rootstock in vitro]. Bulletin of agricultural science, 43–45.
67. Melnychuk, M. D., Novak, T. V., & Kunakh, V. A. (2003). Biotekhnolohiia roslyn [Biotechnology of plants] : textbook. K., Poligrafconsulting, 520 (in Ukrainian).
68. Mikhovich, Zh. E., & Teteryuk, L. V. (2020). In vitro culture of the ural endemic gypsophila uralensis less. (Caryophyllaceae) [Введение в культуру in vitro эндемика урала gypsophila uralensis less. (Caryophyllaceae)]. Turczaninowia, 23 (3), 29–35. doi: 10.14258/TURCZANINOWIA.23.3.4
69. Musiienko, M. M. (2005). Fiziolohiia roslyn [Physiology of plants]: textbook. K., Lybid, 808 (in Ukrainian).
70. Nakonechnaya, O. V., Gafitskaya, I. V., Burkovskaya, E. V., Khrolenko, Y. A., Grishchenko, O. V., Zhuravlev, Y. N., Subbotin, E. P., & Kulchin, Y. N. (2019). Effect of Light Intensity on the Morphogenesis of Stevia rebaudiana under In Vitro Conditions. Russian Journal of Plant Physiology, 66 (4), 656–663. doi: 10.1134/S1021443719040095
71. Nas, M. N., Yüksel, B. & Sevgin, N. (2013). Shortcut to long-distance developing of a tissue culture medium: micropropagation of mature almond cultivars as a case study. Turkish Journal of Botany. 37(6), 1134–1144.
72. Petrova, G. A., Yatmanova, N. M., Mukhametshina, A.R., Musin, H. G., & Akhmetov, A. Y. (2021). Microclonal reproduction of common aspen (Populus tremula L.) genotypes in the Republic of Tatarstan IOP Conference Series: Earth and Environmental Science, 935 (1), art. no. 012003. doi: 10.1088/1755-1315/935/1/012003
73. Pianova, A. S., Salokhin, A. V., & Sabutski, Yu. E. (2021). In vitro propagation and conservation of Leontopodium palibinianum Beauverd (Asteraceae), endemic species of Primorye Territory Turczaninowia, 24 (4), 108–113. doi: 10.14258/TURCZANINOWIA.24.4.10
74. Podhaietskiy, A. A., Matskevych, V. V., Filipova, L. M., & Kravchenko, N. V. (2020). Exogenous determinants of growth of Pavlovnia regenerant in vitro. The scientific heritage. 2. 53 (53), 5–15.
75. Podhaietskiy, A. A., Matskevych, V. V., Filipova, L. M., Skripchenko, N. V., & Kravchenko, N. V. (2020). Trophic and hormonal determinants of ontogenesis Actinia chenensis var. deliciosa (A. Chev.) in vitro at the cultivation stage: East European Sience Journal. 10(62), 17–24.
76. Podhaietskyi, A. A., Matskevych, V. V., Filipova, L. M., & Kravchenko, N. V. (2020). Problemy postaseptychnoi adaptatsii roslyn [Problems of postaseptic adaptation of plants]. VII International Scientific and Practical Conference «Dynamics of the development of word Science». 18–20 March, Wankuwer, Kanada, 662–675.
77. Podhaietskyi, A. A., Matskevych, V. V., & Podhaietskyi, A. An. (2018). Osoblyvosti mikroklonalnoho rozmnozhennia vydiv roslyn [Peculiarities of microclonal reproduction of plant species]: monohrafiia. Bila Tserkva : BNAU, 209 (in Ukrainian).
78. Podhaietskyi, A. A., Matskevych, V. V., Filipova, L. M., Kravchenko, N. V., & Hnitetskyi M. O. (2020). Adaptyvnist roslyn na etapi in vitro-ex vitro [Adaptability of plants at the in vitro-ex vitro stage]. East Europen Science Journal. 4(56). Part 2, 25–33.
79. Podhaietskyi, A. A., Matskevych, V. V., Filipova, L. M., Skrypchenko, N. V., & Kravchenko, N. V. (2020). Trofichni ta hormonalni determnanty ontohenezu Actinidia chinensis var, deliciosa (a.Chev.) in vitro na etapi multyplikatsii [Trophic and hormonal determinants of the ontogenesis of Actinidia chinensis var, deliciosa (a.Chev.) in vitro at the stage of multiplication]. East European Scientific Journal 10(62), part 1, 17–24 (in Ukrainian).
80. Popov, V. M., Dolhova, T. A., & Lymanska, S. V. (2020). Genomics: education. manual etc. [Henomika: navch. posib. ta in.]. Kharkiv. 104. (in Ukrainian).
81. Premkumar, A., Mercado, J. A., & Quesada, M. A. (2001). Effects of in vitro tissue culture conditions and acclimatization on the contents of Rubisco, leaf soluble proteins, photosynthetic pigments, and C/N ratio, Journal of Plant Physiology, 158, 7, 835–840. doi: 10.1078/0176-1617-00214
82. Pushkarova, N. O., Lakhneko, O. R., Belokurova, V. B., Morgun, B. V., & Kuchuk, M. V. (2018). Peculiarities of Regeneration and Genetic Variability of Crambe koktebelica and Crambe tataria. Plants in vitro. Cytology and Genetics, 52 (4), 269–275. doi: 10.3103/S0095452718040096
83. Pushkarova, N. O., Lakhneko, O. R., Morgun, B. V., Kuchuk, M. V., Blume, Y. B., & Yemets, A. I. (2019). Crambe aspera plants in vitro propagation and its effect on fatty acids and phenolic compounds content and genome stability. Biopolymers and Cell, 35(2), 118–128. doi: 10.7124/bc.00099D
84. Samarina, L.S., Malyarovskaya, V.I., Rogozhina, E.V., & Malyukova, L.S. (2017). Endophytes, as promotors of in vitro plant growth. Sel’skokhozyaistvennaya Biologiya, 52 (5), 917–927. doi: 10.15389/agrobiology.2017.5.917eng.
85. Santos, А. M., Oliver, M. J., Sánchez, A. M., Payton, P. R., Gomes, J. P., Miguel, C., & Oliveira, M. M. (2009). An integrated strategy to identify key genes in almond adventitious shoot regeneration, Journal of Experimental Botany, Volume 60, Issue 14, October 2009, 4159–4173, doi: 10.1093/jxb/erp250
86. Shmykova, N. A., Suprunova, T. P., & Pivovarov, V. F. (2015). Biotechnologies and molecular methods in vegetable crop breeding (to 95th Anniversary of VNIISSOK). Sel’skokhozyaistvennaya Biologiya, 50 (5), 561–570. doi: 10.15389/agrobiology.2015.5.561eng
87. Shyta, O. P., Filipova, L. M., & Matskevych, V. V. (2021). Determinants of ontogeny of Prunus Dulcis in vitro [Determinanty ontohenezu Prunus Dulcis in vitro]. Actual problems, ways and prospects of the development of landscape architecture, horticulture, urban ecology and phytoremediation: materials of the international scientific and practical conference (Bila Tserkva, September 16–17, 2021). BNAU, Bila Tserkva, 2021, 69–71 (in Ukrainian).
88. Skoog, F., & Miller, C.O. (1957). Chemical regulation of growth and organ formation plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11, 118–130.
89. Stadnyk, A. P., Filipova, L. M, & Matskevych, V. V. (2014). Ekolohichni osoblyvosti trofichnoi ta hormonalnoi determinatsii ryzohenezu in vitro rehenerantiv khosty [Ecological features of trophic and hormonal determination of rhizogenesis in vitro of hosta regenerants]. Agroecological journal, 3, 75–80 (in Ukrainian).
90. Subin, О. V. (2015). Microclonal propagation of strawberry (Fragaria Ananassa Duch.) Alina sort in culture in vitro. Scientific journal «Biological systems: theory and innovations», [S.l.], n. 214, 281–288.
91. Tavares, A. R., Kanashiro, S., Ribeiro, R. C. S., Gonçalves, A. N. & Jocys, T. (2015). Effect of phosphorus on in vitro growth and development of Bromeliad aechmea blanchetiana. Acta Hortic. 1083, 241–248. doi: 10.17660/ActaHortic.2015.1083.29
92. Terek, O. I., & Patsula, O. I. (2011). Rist i rozvytok roslyn: [Growth and development of plants] navch. posibnyk. Lviv : LNU imeni Ivana Franka, 328. (in Ukrainian).
93. Tkachenko, O. V., Evseeva, N. V., Boikova, N. V., Matora, L. Y., Burygin, G. L., Lobachev, Y. V., & Shchyogolev, S.Y. (2015). Improved potato microclonal reproduction with the plant growth-promoting rhizobacteria Azospirillum. Agronomy for Sustainable Development, 35 (3), 1167–1174. Ассess mode: doi: 10.1007/s13593-015-0304-3
94. Vedenychova, N. P., & Kosakivska, I. V. (2017). Tsytokininy yak rehuliatory ontohenezu roslyn za riznykh umov zrostannia [Cytokinins as regulators of plant ontogenesis under different growth conditions]. Our format, Kyiv, 200 (in Ukrainian).
95. Vlasenko, M. Iu., Veliaminova-Zernova, L. D., & Matskevych, V. V. (2006). Fiziolohiia roslyn z osnovamy biotekhnolohii: [Physiology of plants with the basics of biotechnology] textbook. Bila Tserkva, 504 (in Ukrainian).
96. Woodward, A. J. (1995). The optimisation of nitrogen content for micropropagation of eucalyptus marginata. Ассess mode: https://ro.ecu.edu.au/theses_hons/286
97. Zakharova, O., Kolesnikova, E., Kolesnikov, E., Yevtushenko, N., Morkovin, V., & Gusev, A. (2020). CuO nanoparticles effects on poplar×aspen hybrid clones at various stages of microclonal propagation. IOP Conference Series: Earth and Environmental Science, 595 (1), art. no. 012001. doi: 10.1088/1755-1315/595/1/012001
98. Zakharova, O., Vasyukova, I., Strekalova, N., & Gusev, A. (2019). Effects of silver nanoparticles on morphometric parameters of hairy birch (Betula pubescens) at various stages of micro cloning. IOP Conference Series: Earth and Environmental Science, 392 (1), art. no. 012024. doi: 10.1088/1755-1315/392/1/012024
99. Zarrabeitia, Aintzane & Lejarcegui, Xabier & Veramendi, Jon & Mingo-Castel, Angel. (1997). Influence of nitrogen supply on micropropagation and subsequent microtuberization of four potato cullwars. American Potato Journal. 74, 369–378. doi: 10.1007/BF02852776
100. Zhang, W., Swarup, R., Bennet, M., Schaller, G. E., & Kieber, J. J. (2013). Cytokinin induces cell division in the quiescent center of the Arabidopsis root apical meristem. Curr. Biol. 23, 19779–1989.
101. Zhuzhzhalova, T. P., Kolesnikova, E. O., Vasilchenko, E. N., & Cherkasova, N. N. (2020). Biotechnological methods as a tool for efficient sugar beet breeding. Vavilovskii Zhurnal Genetiki i Selektsii, 24 (1), 40–47. doi: 10.18699/VJ20.593
Published
2022-12-04
How to Cite
MatskevychО., Kimeichuk, I., Matskevych, V., & Pavlichenko, A. (2022). TROPHIC AND PHYTOHORMONAL DETERMINANTS OF ONTOGENESIS IN VITRO. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 48(2), 111-123. https://doi.org/10.32845/agrobio.2022.2.16