INFLUENCE OF SOWING RATES ON THE GROWTH AND DEVELOPMENT OF GRAIN SORGHUM IN NORTH-EASTERN PART OF UKRAINE

Keywords: grain sorghum, sowing rates, growth parameters, plant density, chlorophyll content, plant development.

Abstract

Sorghum is a crop with high economic value, used for food needs, animal feed and as a commodity for export. Sorghum is associated with possible scenarios of future agricultural production in the conditions of climate change. It is sorghum, as a stress-resistant crop, that can replace traditional grain crops. The biological features of sorghum and the future prospects of crop growing attract the attention of many researchers in different regions of the world. Considering this, the study of the sorghum characteristics in the conditions of North-Eastern Ukraine is relevant. The search for the optimal sowing rate and plant density in the agrocenosis is the basis for obtaining the optimal crop, achieving high yield and maximum profit. To realize the maximum yield potential, a balanced number of individuals in the plant population is necessary, i.e. a certain level of sowing density. For this purpose, in 2020–2022, experiment was carried out with sorghum crop. The aim of it was to study the optimal sowing rates of grain sorghum and the influence of stem density (agropopulation structure) on the growth and development of plants in the conditions of the North-Eastern Forest Steppe of Ukraine. The influence of different sowing rates on grain sorghum varieties and hybrids was investigated (Yanki, Kraevyd, Dniprovskyi 39, Samaran 6) by analyzing the growth and development characteristics of plants. The obtained data showed that with an increase in the stand density , the number of leaves per plant decreased significantly in all variants of the experiment in all variety samples. Thickening with stalks (sowing rate of 490 th ha) led to an increase in the height of plants, negatively affected the area of the leaf surface of plants (the number of leaves and their area decreased) and the content of pigments (chlorophyll a and chlorophyll c) in the leaves The optimal sowing rate for the formation of vegetative organs of plants and the assimilation area was 165 th/ha. At the same time, the ambiguous reaction of the variety samples to certain options sowing rates indicates the need for additional research.

References

1. Andrade, F. H., Calvino P., Cirilo, A. & Baebieri, P. (2002). Yield responses to narrow row depend on increased radiation interception. Agronomy Journal, 94(10), 113–118.
2. Ajidahun, J. A.& Sebetha, E. T. (2022) Sorghum Grain Quality as Influenced by Plant Density, Nitrogen Nutrition and Cultivar. Indian Journal of Agricultural Research, 56, 177–182. doi: 10.18805/IJARe.A-656
3. Arunakumari, H. & Rekha S. (2016). Plant density and nitrogen in sorghum. International Journal of Science Natural, 7(4), 702–706
4. Berenguer, M. J. & Faci J. M. (2001). Sorghum (Sorghum bicolor L. Moench) yield compensation processes under different plant densities and variable water supply. European Journal of Agronomy, 15, 43–55.
5. Caliskan, S., Aslan, M., Uremis, I., & Caliskan, M. E. (2007). The effect of row spacing on yield and yield component of full season and double cropped soybean. Turkish Journal of Agriculture and Forestry, 31, 147–154.
6. Carriedo, L. G., Maloof, J. N. & Brady, S. M. (2016). Molecular control of crop shade avoidance. Curr. Opin. Plant Biol., 30, 151–158.
7. Carmi, A., Aharoni, Y., Edelstein, M., Umiel, N., Hagiladi, A., Yosef, E., Nikbachat, M., Zenou, A. & Miron, J. (2006) Effects of irrigation and plant density on yield, composition and in vitro digestibility of a new forage sorghum variety, Tal, at two maturity stages. Animal Feed Science and Technology, 131, 120–132.
8. Carlos, J., Dan, F., Fromme, D. & W. James Grichar (2012) Grain sorghum response to row spacing and plant populations in the texas coastal bend region., International Journal of Agronomy, 2012, Article ID 238634. doi: 10.1155/2012/238634
9. Conley, S. P., Stevens, W. G., & Dunn, D. D. (2005) Grain sorghum response to row spacing, plant density, and planter skips. Crop Management.
10. Christopher, E. Rouse, Nilda R. Burgos, Vijay Singh & Larry Earnest (2020) Evaluation of sweet sorghum planting density and minimal nitrogen input, under irrigated and non-irrigated conditions, for bioethanol feedstock production, Biofuels, 11(5), 577–586. doi: 10.1080/17597269.2017.1378992
11. Dembele, J. S. B., Gano B, Vaksmann, M., Kouressy M., Dembele, L.L., Doumbia, M., Teme, N., Diouf, D. & Audeber, t A. (2020) Response of eight sorghum varieties to plant density and nitrogen fertilization in the Sudano-Sahelian zone in Mali. African Journal of Agricultural Research., 16(10), 1401–1410. doi: 10.5897/AJAR2020.15025
12. Franklin, K. A. & Whitelam, G. C. (2005). Phytochromes and shade-avoidance responses in plants. Ann. Bot. 96, 169–175.
13. Jones, O. R. & G. L. Johnson (1991) Row width and plant density effects on Texas High Plains sorghum, Journal Production Agriculture, 4, 613–621.
14. Gondal, M., Hussain, A., Yasin, S., Musa, M., & Rehman, H. (2018). Effect of seed rate and row spacing on grain yield of sorghum. SAARC Journal of Agriculture, 15(2), 81–91. doi: 10.3329/sja.v15i2.35154
15. Hrytsaienko, Z. M Hrytsaienko, A . A. & Karpenko, V. P. Metody biolohichnykh ta ahronomichnykh doslidzhen roslyn i hruntiv. [ Methods of biological and agronomic research of plants and soils]. Kyiv, Nichlava, 2003, 320. (in Ukranian)
16. Kebrom, T. H. & Mullet, J. E. (2016). Transcriptome profiling of tiller buds provides new insights into PhyB regulation of tillering and indeterminate growth in sorghum. Plant Physiol. 170, 2232–2250. doi: 10.1104/pp.16.00014
17. Kebrom, T. H. (2017). A growing stem inhibits bud outgrowth—the overlooked theory of apical dominance. Front. Plant Sci., 8, 1874. doi: 10.3389/fpls.2017.01874
18. Kalenska, S. M., & Naidenko, V. M. (2018). Urozhainist sorho zernovoho zalezhno vid shyryny mizhriad ta systemy udobrennia [Harvest of grain sorghum depending on the width of the rows and the fertilization system]. Scientific Papers of the Institute of Bioenergy Crops and Sugar Beet, 26, 67–75. (in Ukrainian). doi: 10.47414/np.26.2018.211203
19. Kapanigowda, M. H., Perumal, R., Djanaguiraman, M., Aiken, R.M., Tesso, T., Prasad,P. V.V. & Little, C. R. (2013). Genotypic variation in sorghum [Sorghum bicolor (L.) Moench] exotic germplasm collections for drought and disease tolerance. Springer Plus, 2, 2–13.
20. Karazhbei, H. M., & Tehun, S. V. (2012). Produktyvnist sorho zvychainoho dvokolorovoho (Sorghum bicolor L.) zalezhno vid rivnia mineralnoho zhyvlennia ta hustoty stoiannia. [Productivity of two-color sorghum (Sorghum bicolor L.) depending on the level of mineral nutrition and plant density] Scientific papers of the Institute of Bioenergy Crops and Sugar Beet, 14, 67–70. (in Ukrainian).
21. Lafarge, T.A. & Hammer, G. L. (2002). Predicting crop leaf area production: shoot assimilate accumulation and partitioning, and leaf area ratio, are stable for a range of sorghum population densities. Field Crops Research, 137–151.
22. Lukeba J.-C. L., Vumilia R.K, Nkongolo K.C.K., Mwabila M. L., & Tsumbu, M. (2013) Growth and Leaf Area Index Simulation in Maize (Zea mays L.) Under Small-Scale Farm Conditions in a Sub-Saharan African Region”, American Journal of Plant Sciences, 4 (3), 575–583. doi:10.4236/ajps.2013.43075
23. Maulana, F. & Tesso, T. T. (2013). Cold temperature episode at seedling and flowering stages reduces growth and yield components in sorghum. Crop Science, 53, 564–574.
24. Myers , R. J. K. & M. A. Foale (1981). Row spacing and population density in grain sorghum 0 a simple analysis. Field Crops Res., 4, 147–154.
25. Oyier, M. O., Owuoche, J.O., Oyoo, M. E., Cheruiyot, E., Mulianga, B. & Rono, J. (2017). Effect of harvesting stage on sweet sorghum (Sorghum bicolor L.) genotypes in Western Kenya. The Scientific World Journal, Article ID 8249532, 10 pages. doi: 10.1155/2017/8249532
26. Parmar, N.G. & S.V. Chandra (2002). Growth analysis using curve fitting method in early and late son sunflower. Planr Breeding and Seed Science 46(1), 61–69. 27. Pravdyva, L. A. (2021). Features of growth of sorghum [Sorghum bicolor (L.) Moench] plants depending on the width of rows and seeding rate in the conditions of the Right-Bank Forest-Steppe of Ukraine. Plant Varieties Studying and Protection, 17(2),139–145. doi: 10.21498/2518-1017.17.2.2021.236521
28. Rozhkov, A. O. & Puzik, V. K. (2013.) Dynamika formuvannia pihmentnykh rechovyn u lystkakh roslyn pshenytsi tverdoi yaroi za dii riznykh variantiv tsenotychnoi napruhy mizh roslynamy v posivakh [The dynamics of the formation of pigment substances in the leaves of durum spring wheat plants under the influence of different variants of the coenotic tension between plants in crops]. Bulletin of the Poltava State Academy , 3, 7–12 (in Ukranian).
29. Saberi A. R. & Siti Aishah H. (2013) Nutrient Concentration of Forage Sorghum (Sorghum Bicolor L) Varieties Under Influenced Of Salinity and Irrigation Frequency. The International Journal of Biotechnology. Pak Publishing Group, 2(10), 163–170.
30. Sana Qasim Hussein, & Ali Kareem Hussein. (2021). Effect of Plant Densities on Some Growth Traits of Varieties of Sorghum (Sorghum bicolor (L) Moench). Annals of the Romanian Society for Cell Biology, 4455–4463. Access mode: https: //www.annalsofrscb.ro/index.php/journal/article/view/1941
31. Schwechheimer, C. & Willige, B. C. (2009) Shedding light on gibberellic acid signalling. Curr. Opin. Plant Biol., 12, 57–62.
32. Silva, J. M. F. D., Dutra, A. S., Camara, F. T. D.a, Pinto, A. A., & Silva, F. E. D.a (2017). Row spacing, plant density, sowing and harvest times for sweet sorghum. Pesquisa Agropecuária Tropical, 47, 408–415. doi: 10.1590/1983-40632017 v474858
33. Stamm, P. & Kumar, P. P. (2010). The phytohormone signal network regulating elongation growth during shade avoidance. J. Exp. Bot., 61, 2889–2903
34. Tang, C., Sun, C., Du, F., Chen, F., Ameen, A., Fu, T. & Hui Xie G. (2018). Effect of Plant Density on Sweet and Biomass Sorghum Production on Semiarid Marginal Land. Sugar Tech., 20, 312–322. doi: 10.1007/s12355-017-0553-3
35. Thomison, P. R. & Jordan, D. M. (1995) Plant population effects on corn hybrids differing in ear growth habit and prolificacy. Journal of Production Agriculture, 8, 394–400. doi: 10.2134/jpa1995.0394
36. Volkodav V. V. Metodyka sortovyprobuvannia s.-h. kultur / V. V. Volkodav, A. V. Andrushchenko, A. V. Pilkevych. [Methodology of crop variety testing]. Kyiv, 2000. – 100 (in Ukranian)
37. Yu, K. M. J., McKinley, B. & Rooney, W. L. (2021). High planting density induces the expression of GA3-oxidase in leaves and GA mediated stem elongation in bioenergy sorghum. Sci Rep., 11, 46. doi: 10.1038/s41598-020-79975-8
38. Wang, Y., Sun, J., Ali, Sameh S.; Gao, L.; Xingnan, N., Xia, L., Yanfang, W. & Jianxiong, J. (2020). Identification and expression analysis of Sorghum bicolor gibberellin oxidase genes with varied gibberellin levels involved in regulation of stem biomass. Ind. Crops Prod., 145, 111951.
Published
2023-01-20
How to Cite
Kovalenko, M., & Zhatova, H. (2023). INFLUENCE OF SOWING RATES ON THE GROWTH AND DEVELOPMENT OF GRAIN SORGHUM IN NORTH-EASTERN PART OF UKRAINE. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 49(3), 25-31. https://doi.org/10.32845/agrobio.2022.3.4