ALLELOPATHIC EFFECT OF METABOLITES PRODUCED BY STREPTOMYCES SP. HU2014 ON WHEAT AND GREEN BRISTLEGRASS

Keywords: Streptomyces, allelopathy, response index, wheat, green bristlegrass

Abstract

Plant growth-promoting rhizobacteria widely exist in the plant rhizosphere. They provide nutrition and produce some antibiotic substances to suppress the plant diseases and promote the growth of plants. Therefore, the study of allelopathy is a very important part in the interaction between rhizobacteria and plant. Streptomyces, a genus of actinomycetes, is well known for its bioactive metabolites, mainly including antibiotics, hormones, and hydrolase, which can affect plants growth. In the present study, the allelopathic effect of Streptomyces sp. HU2014 metabolites on wheat (Triticum aestivum L.) and green bristlegrass (Setaria viridis (L.) Beauv.) were estimated using the response index (RI). Negative RI values indicated inhibition of plant growth; positive values indicated stimulation of plant growth. Four fractions (F2, F4, F6 and F8) from the cell-free filtrates of HU2014 culture broth had a certain effect on the shoot and root length of above tested plant seedlings. For wheat, the results showed that fraction of F2 at 10 mg/ml had the strongest inhibition on the shoot length (RI = -0.53) and root length (RI = -0.22). However, fraction of F2 at 1 mg/ml promoted the shoot length (RI = 0.01). Fraction of F4 and F6 at 10 mg/ml had strongest inhibition on the shoot and root length. Fraction of F8 had the highest inhibition on the shoot length (RI = -0.66) at 5 mg/ml, and the root length (RI = -0.66) at 10 mg/ml. For green bristlegrass, F2 fraction at 10 mg/ml had the strongest inhibition on the shoot (RI = -0.73) and root length (RI = -1.00). F4 fraction had the highest inhibition on the shoot length (RI = -0.69) at 5mg/ml, and the root length (RI = -0.85) at 10 mg/ml. Fraction of F6 had the highest inhibition on the shoot length (RI = -0.59) at 10 mg/ml, and the root length (RI = -0.80) at 5 mg/ml. Fraction of F8 had the highest inhibition on the shoot length (RI = -0.47) at 5mg/ml, and the root length (RI = -0.93) at 10 mg/ml. From the above results, we can draw a conclusion that four fractions had the allelopathic effects on the shoot and root length of two tested plants except F2 fraction at 1 mg/ml promoting the wheat shoot length. Thus, at an early stage of plant growth, the low concentration of allelopathic substances produced by HU2014 may promote the growth of wheat, while these agents inhibit the growth of green bristlegrass. Therefore, this strain can be promising both as a biofungicide and as a bioherbicide.

References

1. Aci, M. M., Sidari, R., Araniti, F., & Lupini, A. (2022). Emerging Trends in Allelopathy: A Genetic Perspective for Sustainable Agriculture. Agronomy-Basel, 12(9). doi:10.3390/agronomy12092043
2. Arafat, Y., Din, I. U., Tayyab, M., Jiang, Y. H., Chen, T., Cai, Z. Y., Zhao, H. Y., Lin, X. M., Lin, W. X., & Lin, S. (2020). Soil Sickness in Aged Tea Plantation Is Associated With a Shift in Microbial Communities as a Result of Plant Polyphenol Accumulation in the Tea Gardens. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.00601
3. Aslam, F., Khaliq, A., Matloob, A., Tanveer, A., Hussain, S., & Zahir, Z. (2017). Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications. Chemoecology, 27(1), 1–24. doi:10.1007/s00049-016-0225-x
4. Chen, P., Huang, R., Zuo, L. Z., Zhang, Y. Q., & Li, L. (2021). Allelopathic potential of root endophytic bacterial metabolites on seeds germination of Casuarina equisetifolia. Allelopathy Journal, 52(2), 261–276. doi:10.26651/allelo.j/2021-52-2-1321
5. Dias, M. P., Bastos, M. S., Xavier, V. B., Cassel, E., Astarita, L. V., & Santarém, E. R. (2017). Plant growth and resistance promoted by Streptomyces spp. in tomato. Plant Physiology and Biochemistry, 118, 479–493. doi:10.1016/j.plaphy.2017.07.017
6. Francisco, Macías, Francisco, Jr, Mejías, José, Mg, & Molinillo. (2019). Recent advances in allelopathy for weed control: from knowledge to applications. Pest Management Science, 75(9), 2413–2436. doi:10.1002/ps.5355
7. Hameed, A., Shahina, M., Young, L. S., Lai, W. A., Sridhar, K. R., & Young, C. C. (2019). Bacteriostatic stimulus of meropenem on allelochemical-metabolizing Burkholderia sp. LS-044 mitigates ferulic acid autotoxicity in rice (Oryza sativa ssp. japonica cv. Tainung 71). Plant and Soil, 443(1–2), 73–86. doi:10.1007/s11104-019-04195-7
8. Hussain, M. I., Danish, S., Sanchez-Moreiras, A. M., Vicente, O., Jabran, K., Chaudhry, U. K., Branca, F., & Reigosa, M. J. (2021). Unraveling Sorghum Allelopathy in Agriculture: Concepts and Implications. Plants-Basel, 10(9). doi:10.3390/plants10091795
9. Katz, L., & Baltz, R. H. (2016). Natural product discovery: past, present, and future. J. Ind. Microbiol . Biotechnol., 43(2–3), 155–176. doi:10.1007/s10295-015-1723-5
10. Li, N. C., Zhang, J. Y., Zhao, X. Y., Wang, P. B., Tong, M. M., & Glibert, P. M. (2020). Allelopathic Inhibition by the Bacteria Bacillus cereus BE23 on Growth and Photosynthesis of the Macroalga Ulva prolifera. Journal of Marine Science and Engineering, 8(9). doi:10.3390/jmse8090718
11. Mishra, S., Upadhyay, R. S., & Nautiyal, C. S. (2013). Unravelling the beneficial role of microbial contributors in reducing the allelopathic effects of weeds. Applied Microbiology and Biotechnology, 97(13), 5659–5668. doi:10.1007/s00253-013-4885-y
12. Mpofu, E., Chakraborty, J., Suzuki-Minakuchi, C., Okada, K., Kimura, T., & Nojiri, H. (2020). Biotransformation of Monocyclic Phenolic Compounds by Bacillus licheniformis TAB7. Microorganisms, 8(1). doi:10.3390/microorganisms8010026
13. Muller, J. P., Hauzy, C., & Hulot, F. D. (2012). Ingredients for protist coexistence: competition, endosymbiosis and a pinch of biochemical interactions. Journal of Animal Ecology, 81(1), 222–232. doi:10.1111/j.1365-2656.2011.01894.x
14. Mun, B. G., Lee, W. H., Kang, S. M., Lee, S. U., Lee, S. M., Lee, D. Y., Shahid, M., Yun, B. W., & Lee, I. J. (2020). Streptomyces sp. LH 4 promotes plant growth and resistance against Sclerotinia sclerotiorum in cucumber via modulation of enzymatic and defense pathways. Plant and Soil, 448(1–2), 87–103. doi:10.1007/s11104-019-04411-4
15. Nichols, V., Verhulst, N., Cox, R., & Govaerts, B. (2015). Weed dynamics and conservation agriculture principles: A review. Field Crops Research, 183, 56–68. doi:10.1016/j.fcr.2015.07.012
16. Nozari, R. M., Ortolan, F., Astarita, L. V., & Santarem, E. R. (2021). Streptomyces spp. enhance vegetative growth of maize plants under saline stress. Brazilian Journal of Microbiology, 52(3), 1371-1383. doi:10.1007/s42770-021-00480-9
17. Scavo, A., Abbate, C., & Mauromicale, G. (2019). Plant allelochemicals: agronomic, nutritional and ecological relevance in the soil system. Plant and Soil, 442(1-2), 23–48. doi:10.1007/s11104-019-04190-y
18. Schandry, N., & Becker, C. (2020). Allelopathic Plants: Models for Studying Plant-Interkingdom Interactions. Trends in Plant Science, 25(2), 176–185. doi:10.1016/j.tplants.2019.11.004
19. Sun, Y. Y., Zhang, Q. X., Zhao, Y. P., Diao, Y. H., Gui, F. R., & Yang, G. Q. (2021). Beneficial rhizobacterium provides positive plant-soil feedback effects to Ageratina adenophora. Journal of Integrative Agriculture, 20(5), 1327–1335. doi:10.1016/s2095-3119(20)63234-8
20. Tarkka, M. T., Lehr, N. A., Hampp, R., & Schrey, S. D. (2008). Plant behavior upon contact with streptomycetes. Plant Signaling & Behavior, 3(11), 917-919. doi:10.4161/psb.5996
21. Viaene, T., Langendries, S., Beirinckx, S., Maes, M., & Goormachtig, S. (2016). Streptomyces as a plant's best friend? FEMS Microbiology Ecology, 92(8), 1–10. doi:10.1093/femsec/fiw119
22. Vurukonda, S. S. K. P., Giovanardi, D., & Stefani, E. (2018). Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. International Journal of Molecular Sciences, 19(4), 1-26. doi:10.3390/ijms19040952
23. Williamson, G. B., & Richardson, D. (1988). Bioassays for allelopathy: Measuring treatment responses with independent controls. Journal of chemical ecology (USA), 14(1), 181. doi:10.1007/BF01022540
24. Xi, J., Ding, Z. B., Xu, T. Q., Qu, W. X., Xu, Y. Z., Ma, Y. Q., Xue, Q. H., Liu, Y. X., & Lin, Y. B. (2022). Maize Rotation Combined with Streptomyces rochei D74 to Eliminate Orobanche cumana Seed Bank in the Farmland. Agronomy-Basel, 12(12). doi:10.3390/agronomy12123129
25. Xiao, Z. X., Zou, T., Lu, S. G., & Xu, Z. H. (2020). Soil microorganisms interacting with residue-derived allelochemicals effects on seed germination. Saudi Journal of Biological Sciences, 27(4), 1057–1065. doi:10.1016/j.sjbs.2020.01.013
26. Xie, Y. Q., Tian, L. B., Han, X., & Yang, Y. (2021). Research Advances in Allelopathy of Volatile Organic Compounds (VOCs) of Plants. Horticulturae, 7(9). doi:10.3390/horticulturae7090278
27. Yang, C. X., Luo, S. H., Wang, J., Zhu, J. J., Chen, H. L., Zhou, Y. F., & Zhao, X. S. (2021). Effects of ginseng cultivation on rhizosphere soil microecological environment. Allelopathy Journal, 54(2), 235–252. doi:10.26651/allelo.j/2021-54-1361
28. Zhou, B., Kong, C. H., Li, Y. H., Wang, P., & Xu, X. H. (2013). Crabgrass (Digitaria sanguinalis) Allelochemicals That Interfere with Crop Growth and the Soil Microbial Community. Journal of Agricultural and Food Chemistry, 61(22), 5310–5317. doi:10.1021/jf401605g
29. Zhu, H. X., Hu, L. f., Hu, H. Y., Zhou, F., Wang, S. W., Wu, L. L., Rozhkova, T., & Li, C. W. (2022). Identification of a novel Streptomyces sp. strain HU2014 showing growth promotion and biocontrol effect against Rhizoctonia spp. in wheat. Plant Disease, On line. doi:10.1094/pdis-06-22-1493-re
Published
2023-04-03
How to Cite
Hongxia, Z., & Rozhkova, T. (2023). ALLELOPATHIC EFFECT OF METABOLITES PRODUCED BY STREPTOMYCES SP. HU2014 ON WHEAT AND GREEN BRISTLEGRASS. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 50(4), 8-13. https://doi.org/10.32845/agrobio.2022.4.2