GERMINATION CHARACTERISTICS OF QUINOA SEEDS

Keywords: quinoa, seeds, germination, germination indices, biological preparations

Abstract

Seeds, as the organ of plant reproduction, play an important role in the preservation and reproduction of species. Seed quality is important for crop use in agricultural production and it depends on genetic, physiological and physical characteristics. Obtaining quality seed is one of the most important stages, and it is associated with many factors. Genetic aspects and cultivation systems are the leading ones. Because of the specific chemical composition of quinoa seeds and peculiarities of exocarp structure, loses its germination potential in a short period of time when stored in uncontrolled environmental conditions. Various techniques are used to improve the seed quality and their ability to germinate: soaking, heating, treatment with bacterial preparations, selenium and zinc compounds. The purpose of the research was to study the possibilities of pre-sowing treatment for improving the sowing qualities of quinoa seeds with reduced germination ability and to research the germination characteristics of seed samples. Seed treatment was carried out with preparations based on bacteria of the genera Bacillus (Sporofit) and Pseudomonas (Bionorma). The total percentage of seed germination was determined as well as such indicators as the germination rate coefficient (CVG), the germination rate index (GRI), the average germination time (MGT), germination index (GI), growth index (VI). An increase in the general germination of quinoa seeds by 20–22% and better values of all indices after treatment with biological preparations were revealed. Taking into account the environmental safety of the components of the Sporofit and Bionorma preparations, it is advisable to use them not only to improve the germination of quinoa seeds, but also to create microgreen products.

References

1. Adesemoye, A. O. & Kloepper, J. W. (2009). Plantmicrobes interactions in enhanced fertilizer use efficiency. Appl Microbiol Biotechnol, 85, 1–12. doi: 10.1007/s00253-009-2196-0
2. Arash, М., Reza, Т.А. & Mostafa, О. (2017). Cardinal temperatures for seed germination of three Quinoa (Chenopodium quinoa Willd.) cultivars. Iranian Journal of Field Crop Science, Special Issue, 89–100. doi: 10.22059/ijfcs.2017.206204.654106
3. Ayala, C., Fuentes, F. & Contreras, S. (2020). Dormancy and cardinal temperatures for germination in seed from nine quinoa genotypes cultivated in Chile. Plant Genetic Resources: Characterization and Utilization, 18(3), 143–148. doi:10.1017/S1479262120000209
4. Belmonte, С., Soares de Vasconcelos, Е., Lorenzetti, E., Alexandra da Silva Martinez, Pan, R., & Tauane Santos Brito (2019). Germination of quinoa seeds prevenient from agroecological and conventional crop systems Communications in Plant Sciences, 9, 6–12. doi: 10.26814/cps2019002
5. Bhargava, A., Shukla, S. & Deepak, Ohri (2007). Genetic variability and interrelationship among various morphological and quality traits in quinoa (Chenopodium quinoa Willd.) Field Crops Research,101(1),104–116. doi: 10.1016/j.fcr.2006.10.001
6. Bhuker, A., Mor, V.S., Jakhar, S. S. & Puneeth Raj M. S. (2020). Seed quality testing study in Quinoa (Chenopodium quinoa Wild.). Bhartiya Krishi Anusandhan Patrika, 35, 87–90. doi: 10.18805/BKAP224
7. Bourhim, M. R., Cheto, S., Qaddoury, A., Hirich, A. & Ghoulam, C. (2022). Chemical seed priming with zinc sulfate improves quinoa tolerance to salinity at germination stage. Environ. Sci. Proc., 16, 23. doi: 10.3390/environsciproc2022016023
8. Castellión, M., Matiacevich, S., Buera, M. P. & Maldonado, S. (2010). Protein deterioration and longevity of quinoa seeds during long-term storage. Food Chemistry, 121, 952–958.
9. Ceccato, D., Bertero, D. & Batlla, D. (2011). Environmental control of dormancy in quinoa (Chenopodium quinoa) seeds: two potential genetic resources for pre-harvest sprouting tolerance. Seed Science Research, 21, 133–141. doi:10.1017/S096025851100002X
10. Ceccato, D., Bertero, D., Batlla, D., & Galati, B. (2015). Structural aspects of dormancy in quinoa (Chenopodium quinoa): importance and possible action mechanisms of the seed coat. Seed Science Research, 239(1), 1–9. doi: doi:10.1017/S096025851500015X
11. Gholami, S., Dehaghi, M. A., Rezazadeh, A. & Naji, A. M. (2022). Seed germination and physiological responses of quinoa to selenium priming under drought stress. Bragantia, 81, e0722. doi: 10.1590/1678-4499.20210183
12. Gómez-Ramírez, A., López-Santos, C., & Cantos, M (2017). Surface chemistry and germination improvement of Quinoa seeds subjected to plasma activation. Sci Rep., 7, 5924. doi: 10.1038/s41598-017-06164-5
13. Guardianelli, L. M., Salinas, M. V., Brites, C., & Puppo, M. C. (2022). Germination of white and red quinoa seeds: improvement of nutritional and functional quality of flours. Foods, 11, 3272. doi: 10.3390/foods11203272
14. Gutiérrez-Mañero, F. J., Ramos-Solano, B., Probanza, A., Mehouachi, J. R. Tadeo, F. & Talon, M. (2001). The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111, 206–211. doi: 10.1034/j.1399-3054.2001.1110211.x
15. Hajizadeh, Z., Balouchi, H., Salehi, A., Moradi, A. & Rezaei, R. (2022). Evaluation of the effect of bio-priming and seed coating on seed germination and seedling growth indices of Chenopodium Quinoa in cadmium stress. Plant Productions, 45(2), 215–228. doi: 10.22055/ppd.2022.38615.1994
16. Ilchenko, V, Trotsenko, V., Zhatova, H. & Kovalenko, I. (2019). Pre-sowing bacterial treatment and chemical fertilizer application impact on yield capacity and grain quality of hulless (Avena nuda L.) and hulled oats (Avena sativa L.) Journal of Central European Agriculture, 20 (3), 866–875. Access mode: https://jcea.agr.hr/en/issues/article/2 296
17. Kader, M. A. (2005). Comparison of seed germination calculation formulae and the associated interpretation of resulting data. Journal & Proceedings of the Royal Society of New South Wales, 138, 65–75.
18. Kappes, C., Arf, O., Ferreira, J. P., Portugal, J. R., Alcalde, M., Arf, M. V., & Vilela, R. G. (2012). Qualidade fisiológica de sementes e crescimento de plântulas de feijoeiro, em função de aplicações de paraquat em précolheita. Pesquisa Agropecuária Tropical, 42(1), 9–18. doi: 10.1590/S1983-40632012000100002
19. Khan, S., Ullah, A., Ullah, S., Saleem, M. H., Okla, M. K., Al-Hashimi, A., Chen, Y. & Ali, S. (2022). Quantifying temperature and osmotic stress impact on seed germination rate and seedling growth of eruca sativa mill. via hydrothermal time model. Life, 12, 400. doi: 10.3390/life12030400
20. Mahdi, I., Allaoui, A., Fahsi, N. & Biskri, L. (2022). Bacillus velezensis QA2 potentially induced salt stress tolerance and enhanced phosphate uptake in quinoa plants. Microorganisms, 10, 1836. doi: 10.3390/microorganisms-10091836
21. Marcos-Filho, J. (2015). Fisiologia de sementes de plantas cultivadas (2ed.). Abrates: Londrina, PR: Abrates, 659.
22. Nadali, F., Asghari, H. R., & Abbasdokht, H. (2021). Improved quinoa growth, physiological response, and yield by hydropriming under drought stress conditions. Gesunde Pflanzen, 73, 53–66. doi: 10.1007/s10343-020-00527-1
23. Ortuño N., Claros M., Gutiérrez C., Angulo M. & Castillo J. A. (2014). Bacteria associated with the cultivation of quinoa in the Bolivian Altiplano and their biotechnological potential. J. Revista de Agricultura, 53.
24. Panuccio, M. R., Jacobsen, S. E., Akhtar, S. S. & Muscolo, A. (2014). Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB PLANTS, 6, plu047. doi: 10.1093/aobpla/plu047
25. Pitzschke, A. (2016). Developmental peculiarities and seed-borne endophytes in quinoa: omnipresent, robust bacilli contribute to plant fitness. Front. Microbiol. 7,2. doi: 10.3389/fmicb.2016.00002
26. Prashanthisandepogu (2021). Quinoa seed germination and vigor index with bacterization of Pseudomonas aeruginosa Migula. (PGPR). Int. J. Curr. Microbiol. App.Sci., 10 (10), 439–443. doi: 10.20546/ijcmas.2021.1010.052
27. Ranal, M. A. & Denise Garcia de Santana (2006). How and why to measure the germination process? Braz J Bot [Internet]., Braz. J. Bot., 29(1). Available from: doi: 10.1590/S0100-84042006000100002
28. Rodrigues, D. B., Cavalcante, J. A., Almeida, A. S., Nunes, C. A., Serrão, A. F. A., Konzen, L. H., Suñé, A. S., & Tunes, L. V. M. D. (2020). Seed morphobiometry, morphology of germination and emergence of quinoa seeds ‘BRS Piabiru’. Anais Da Academia Brasileira De Ciências, 92 (An. Acad. Bras. Ciênc., 92(1). doi: 10.1590/0001-3765202020181313
29. Romero, G., Heredia, A. & Chaparro-Zambrano, H. N. (2018). Germinative potential in quinoa (Chenopodium quinoa Willd.) seeds stored under cool conditions. Revista U.D.C.A Actualidad & Divulgación Científica, 21(2), 341–350. doi: 10.31910/rudca.v21.n2.2018.1076
30. Santos, E. L., Póla, J. N., Barros, A. S. R., & Prete, C. E. C. (2007). Qualidade fisiológica e composição química das sementes de soja com variação na cor do tegumento. Revista Brasileira de Sementes, 29(1), 20–26.).
31. Sera, B., Stranak, V., Sery, M., Tichy, M. & Spatenka, P. (2008). Germination of Chenopodium album in response to microwave plasma treatment. Plasma Sci. Technol. 10, 506–511. doi: 10.1088/1009-0630/10/4/22
32. Singh, J. S., Pandey, V. C. & Singh, D. P. (2011). Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agri. Eco. Environ., 140, 339–353. doi: 10.1016/j.agee.2011.01.017
33. Souza, F. F. J., Devilla, I. A., de Souza, R. T. G., Teixeira, I. R. & Spehar, C. R. (2016). Physiological quality of quinoa seeds submitted to different storage conditions. African Journal of Agricultural Research, 11(15), 1299–1308. doi: 10.5897/AJAR2016-10870
34. Spehar, C. R. (2007). Quinoa: alternative para diversificação agrícola e alimentar. Planaltina, DF: Embrapa Cerrados., 103. Access mode: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/570429
35. Sturz, A., Christie, B. & Nowak, J. (2000). Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences Prince Edward Island. Canada, 19 (1), 1–30. doi: 10.1080/07352680091139169
36. Salamone, G. I. E , Hynes, R. K. & Nelson, L. M. (2001). Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canad. J. Microbiol., 47, 404–411. doi: 10.1139/w01-029. PMID: 11400730.
37. Testen, A. L., Magnus, M. C. & Backman Paul A. (2022). Plant-growth-promoting traits of bacillus species associated with quinoa (Chenopodium quinoa) and lambsquarters (Chenopodium album). Plant Health Progress, 23(3), 292–299. doi: 10.1094/PHP-09-21-0121-RS
38. Trotsenko, V. I., Melnyk, A. V. & Trotsenko N. V. (2020). Doslidzhennia bazovykh kharakterystyk nasinnia kinoa. [Studies of the basic characteristics of quinoa seeds.] Bulletin of the Sumy National Agrarian University. Series "Agronomy and biology», 1 (39), 71–77. (in Ukrainian). doi: 10.32845/agrobio.2020.1.9
39. Zrig, A., Saleh, A. M., Sheteiwy, M. S., Hamouda, F., Selim, S., Abdel-Mawgoud, M., Almuhayawi, M. S., Okla, M.K., Abbas, Z. K., Wahidah, H., Al-Qahtani, Yehia R. S. & Abd, E. H. (2022). Melatonin priming as a promising approach to improve biomass accumulation and the nutritional values of Chenopodium quinoa sprouts: A genotype-based study. Scientia Horticulturae, 301, 111088. doi: 10.1016/j.scienta.2022.111088
Published
2023-04-03
How to Cite
Trotsenko, N. V., & Zhatova, H. O. (2023). GERMINATION CHARACTERISTICS OF QUINOA SEEDS. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 50(4), 55-61. https://doi.org/10.32845/agrobio.2022.4.8