PHYSIOLOGICAL AND BIOCHEMICAL ASPECTS OF THE RESPONSE OF PLANTS TO SOIL SALININ (OVERVIEW)

Keywords: soil salinity, halophytes, salt stress, osmotic stress, adaptation

Abstract

the current stage, about 20% of the world's arable lands are subject to salinization, and the annual losses of world agriculture due to the spread of such lands reach about 12 billion dollars. Establishing the mechanisms underlying the adaptation of plants to this environmental factor is an urgent scientific problem, important from both a theoretical and a practical point of view. The publication, based on the analysis of literary sources, provides information on the physiological and biochemical aspects of the response of plants to soil salinity. The changes that occur in the plant under the influence of salt stress and in the process of counteracting it are highlighted. It is noted that osmotic stress can occur in plants against the background of salinity. This changes water-related parameters, including cell water content, water potential, and osmotic potential. There is a decrease in the rate of leaf growth, a change in the state of the stomata and the process of photosynthesis, and the growth of shoots is inhibited. The accumulation of a large number of salt ions forces plants to use more energy to absorb water from the soil and maintain internal homeostasis. It was noted that under the influence of salt stress, the accumulation of reactive oxygen species increases and oxidative damage to cells and their structures occurs. This negatively affects the stability of proteins. Peroxidation of membrane lipids is also a marker of oxidative damage to plants under salt stress conditions. It is shown that studies of the mechanism of adaptation of plants to stress have moved from the physiological and ecological level to the molecular level. At the same time, five salt tolerance genes (SOS1-SOS5) were identified. It has been proven that the means of overcoming oxidative stress is the activation of antioxidant enzymes and the synthesis of protective proteins, in particular LEA proteins, which have the ability to counteract dehydration and protect cells against osmotic stress. The given facts prove that the response of plants to the effect of high concentrations of salts is complex and complex and includes many coordinated processes. A number of them are still under active study. Therefore, the success of elucidating the mechanisms of salt resistance of plants is closely related to the general development of science. At the current stage, the level of detail in solving the problem has significantly increased thanks to the use of the latest methods and technologies, including those that make it possible to reveal the essence of adaptation processes, starting from the molecular level and the implementation of genetic control.

References

1. Amezketa, E. (2006). An integrated methodology for assessing soil salinization, a pre-condition for land desertification. Journal of Arid Environment, 67, 594–606. doi: 10.1016/j.jaridenv.2006.03.010
2. Babivchuk, E., Kushnir, S., Belles-Boix, E., Montagu, M. & Inzé, D. (1995). Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts towards the thiol-oxidizing drug diamide. Journal of Biological Chemistry, 270(44), 26224–26231. doi: 10.1074/jbc.270.44.26224
3. Badawi, G.H. Kawano, N., Yamauchi, Y., Shimada, E., Sasaki, R., Kubo, A. & Tanaka, K. (2004). Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiologia Plantarum, 121(2), 231–238. doi: 10.1111/j.0031-9317.2004.00308.x
4. Barkla, B.J. & Pantoja, O. (1996). Physiology of ion transport across the tonoplast ofhigher plants. Annual Review of Plant Physiologyand Plant Molecular Biology, 47, 159–184. doi: 10.1146/annurev.arplant.47.1.159
5. Bartels, D. & Sunkar, R. (2005). Drought and salt tolerance in plants // Critical Reviews in Plant Sciences, 24, 1, 23–58. doi: 10.1080/07352680590910410
6. Bayuelo-Jiménez, J.S, Debouck, D.G. & Lynch, J.P. (2003). Growth, gas exchange, water relations, and ion composition of Phaseolus species grown under saline conditions. Field Crops Research, 80(3), 207–222.
7. Bian, J. M., Tang, J. & Lin, N. F. (2008). Relationship between saline-alkali soilformation and neotectonic movement in Songen Plain, China. Environ Geol, 55(7), 1421-1429
8. Bose, J., Rodrigo-Moreno, A. & Shabala, S. (2014). ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot, 65, 1241–1257. doi: 10.1093/jxb/ert430
9. Chen, Guanping, Wang, Huizhong, Shi, Nongnong & Chen, Shouyi (2006). Advances in the relationship between Na+/H+ reverse transporters and salt tolerance in plants. Chinese Journal of Biological Engineering, 26(5), 101–106.
10. Cheng, N., Pittman, J.K., Zhu, J. & Hirschi, K. (2001). The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. Journal of Biology Chemistry, 279 (4), 2922–2926. doi: 10.1074/jbc.M309084200
11. Chinnusamy, V., Jagendorf, A. & Zhu, J.K. (2005). Understanding and improving salt tolerance in plants. Crop Science, 45(2), 437–448
12. Demiral, T. & Türkan, I. (2006). Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environmental and Experimental Botany, 56(1), 72–79. doi: 10.1016/j.envexpbot.2005.01.005
13. Derkach, V. & Romaniuk, N. D. (2016). Vplyv zasolennia gruntu na roslynni orhanizmy [The influence of soil salinity on plant organisms]. Nauk. zap. Ternop. nats. ped. un-tu. Ser. Biol., 3–4, 67, 91–106 (in Ukrainian).
14. Didenko, N.O., Volkov, R.A. & Panchuk, I.I. (2016). Vplyv solovoho stresu na vmist prolinu ta polifenolnykh spoluk u Arabidopsis thaliana [Effects of saline stress on proline and polyphenolic compounds content in Arabidopsis thalianan]. Biolohichni systemy, 8(1), 35–39 (in Ukrainian).
15. Elkahoui, S., Smaoui, A., Zarrouk, M., Ghrir, R. & Limam, F. (2004). Salt-induced lipid changes in Catharanthus roseus cultured cell suspensions. Phytochemistry, 65, 1911–1917. doi: 10.1016/j.phytochem.2004.06.021
16. Fang, H. L. Liu, G. H. & Kearney, M. (2005). Georelational analysis of soil typesoil salt content, land form, and land use in the Yellow River Delta, China. Environmental Management, 35 (1), 72-83, doi: 10.1007/s00267-004-3066-2
17. Flowers, T. J. & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytol, 179, 945–953. doi: 10.1111/j.1469-8137.2008.02531.x
18. Greenway, H. & Munns, R. (1980). Mechanisms of salt tolerance in non-halophytes. Annuals Review of Plant Physiology, 31, 149–190.
19. Gueta-Dahan, Y., Yaniy, Z., Zilinskas, B.A. & Ben-Hayyim, G. (1997). Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta, 203(4), 460–469. doi: 10.1007/s004250050215
20. Guo, Y., Halfter, U., Ishitani, M. & Zhu, J.K. (2001). Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. The Plant Cell, 13(6), 1383–1399. doi: 10.1105/tpc.13.6.1383
21. Haiying, Yu, Tingxuan, Li & Jianmin, Zhou (2005). Secondary Salinization of soil and its effects on soil properties. Soil, 37, 581–586.
22. Hoque, M.A., Banu, M.N.A., Okuma, E., Amako, K., Nakamura, Y., Shimoishi, Y. & Murata, Y. (2007). Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. Journal of Plant Physiology, 164(11),
23. Horie, T, Karahara, I & Katsuhara, M. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice, 2012, 5, 11. doi: 10.1186/1939-8433-5-11
24. Hossain, M. (2019). Present Scenario of Global Salt Affected Soils, its Management and Importance of Salinity Research. International Research Journal of Biological Sciences, 1, 1–3.
25. Hsu, S.Y. & Kao, C.H. (2003). Differential effect of sorbitol and polyethylene glycol on antioxidant enzymes in rice leaves. Plant Growth Regulation, 39(1), 83–90. doi: 10.1023/A:1021830926902
26. Huang, Mingyong, Zhang, Minsheng, Zhang, Xing (2009). Study on technical approaches of urban greening in coastal Saline-alkali Land Area. Review of 20 Years of Salt flat greening in Tianjin Development Area. Chinese Landscape Architecture, 9, 7.
27. Ingram, J. & Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 377–403. doi: 10.1146/annurev.arplant.47.1.377
28. Isaienkov, C. V. (2012). Fiziolohichni ta molekuliarni aspekty solovoho stresu Roslyn [Physiological and molecular aspects of plant salt stress]. Tsytolohyia y henetyka, 46(5), 50–71 (in Ukrainian). doi: 10.3103/S0095452712050040
29. Jabeen, N. & Ahmad, R. (2012). Improvement in growth and leaf water relation parameters of sunflower and safflower plants with foliar application of nutrient solutions under salt stress. Pak. J. Bot , 44, 1341–1345.
30. Jie, Chen & Xifeng, Lin. Research progress on physiology and mechanism of salt tolerance in plants (2003). Journal of Hainan University (Natural Science Edition), 21(2), 177–182
31. Krasensky, J., Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exper. Bot., 63, 4, 1593–1608. doi: 10.1093/jxb/err4602. Liang, W., Ma, X., Wan, P. & Liu. L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495, 286–291. doi: 10.1016/j.bbrc.2017.11.043
33. Liu Yan, Peng Xuexian, Xie Youju, Dai Jingrui (1997). Advances in genetic engineering of plant resistance to osmotic stress. Advances in Bioengineering, 17(2), 31–38.
34. Liu, H., Xu, J. W. & Wu, X. Q. (2001). Present situation and tendency of saline-alkalisoil in west Jilin Province. J. Journal of Geographical Sciences, 11(3), 321–328.
35. Liu, J. & Zhu, J. K. (1998). A calcium sensor homolog required for plant salt tolerance. Science, 280(5371), 1943–1945.
36. Liu, J. P. & Zhu, J. K. (1997). Proline accumulation and salt-stress-induced gene expression in salt-hypersensitive mutant of Arabidopsis. Plant Phssiology, 114(2), 591–596. doi: 10.1104/pp.114.2.591
37. Liu, J., Ishitani, M., Halfter, U., Kim, C.S. & Zhu, J.K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3730–3734. doi: 10.1073/pnas.97.7.3730
38. Liu, J., Ishitani, M., Halfter, U., Kim, C.S. & Zhu, J.K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3730–3734. doi: 10.1073/pnas.97.7.3730
39. Ma, Q.Q., Wang, W., Li, Y.H., Li, D.Q. & Zou, Q. (2006). Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. Journal of Plant Physiology, 163(2), 165–175. doi: 10.1016/j.jplph.2005.04.023
40. Mahajan, S., Pandey, G.K. & Tuteja, N. (2008). Calcium-and salt-stress signaling in plants: Shedding light on SOS pathway. Archives of Biochemistry and Biophysics, 471(2), 146–158. doi: 10.1016/j.abb.2008.01.010
41. Maurel, C. (1997). Aquaporins and water permeability of plant membranes. Annual Review Plant Physiology and Plant Molecular Biology, 48, 399–429. doi: 10.1146/annurev.arplant.48.1.399
42. McCord, J.M. (2000). The evolution of free radicals and oxidative stress. The American Journal of Medicine, 108(8), 652–659. doi: 10.1016/s0002-9343(00)00412-5
43. Meneguzzo, S., Navari-Izzo, F.& Izzo, R. (1999). Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. Journal of Plant Physiology, 155(2), 274–280. doi: 10.1016/S0176-1617(99)80019-4
44. Muhammad, Akram, Shamshad, Akhtar & Ejaz, Rasul (2002). Impact of NaCl salinity on yield components of some wheat accessions/varieties. Int. J. Agr. Bio, 4, 156–158.
45. Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annu Rev Plant Biol, 59, 651–681. doi: 10.1146/annurev.arplant.59.032607.092911.
46. Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytol., 167, 645–663. doi: 10.1111/j.1469-8137.2005.01487.x
47. Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002, 25, 239–250. doi: 10.1046/j.0016-8025.2001.00808.x
48. Pandey, A. & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 2000, 405 (6788), 837–846. doi: 10.1038/35015709
49. Park, E.J., Jeknic, Z. & Chen, T.H. (2006). Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant and Cell Physiology, 47(6), 706–714. doi: 10.1093/pcp/pcj041
50. Pererva, V. V. (2019). Analiz solestiikosti roslyn morfometrychnym metodom [Analysis of salt resistance of plants by the morphometric method]. Abstracts of I International Scientific and Practical Conference Osaka, Japan, 157–160.
51. Qiu, Q. S., Guo Y., Dietrich, M. A., Schumaker, K.S. & Zhu, J.K. (2002). Regulation of SOS1, a plasma membrane Na+ /H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3 Proceedings of the National Academy of Sciences of the United States of America, 99(12), 8436–8441. doi: 10.1073/pnas.122224699
52. Qiu, Q. S., Guo, Y., Dietrich, M. A., Schumaker, K.S. & Zhu, J.K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the Nationgal Academy of Sciences of the United States of America, 99(12), 8436–8441. doi: 10.1073/pnas.122224699
53. Raza, S.H., Athar, H.R., Ashraf, M. & Hameed, A. (2007). Glycine betaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environmental and Experimental Botany, 60(3), 368–376
54. Roxas, V.P., Lodhi, S.A., Garrett, D.K., Mahan, J.R. & Allen, R.D. (2000). Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant and Cell Physiology, 41(11), 1229–1234 doi: 10.1093/pcp/pcd051
55. Sairam, R.K. & Srivastava, G. C. (2002). Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci, 2002, 162, 897–904. doi: 10.1016/S0168-9452(02)00037-7
56. Shabala, L., Cuin, T.A., Newman, I.A. & Shabala, S. (2005). Salinity-induced ion flux patterns from the excised roots of Arabidopsis SOS mutants. Planta, 222(6), 1041–1050
57. Shi, H. & Zhu, J.K. (2002). SOS4, a pyridoxal kinase gene, is required for root hair developmennt in Arabidopsis. Plant Physiology, 129(2), 585–593. doi: 10.1104/pp.001982
58. Shi, H., Ishitani, M., Kim, C. & Zhu, J.K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+ /H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12), 6896–6901. doi: 10.1073/pnas.120170197
59. Shi, H., Kim, Y.S., Guo, Y., Stevenson, B. & Zhu, J.K. (2003). The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell, 15(1), 19–32. doi: 10.1105/tpc.007872
60. Shi, H., Xiong, L., Stevenson, B., Lu, T. & Zhu, J.K. (2002). The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell, 14(3), 575–588. doi: 10.1105/tpc.010417
61. Shi, Yuanchun (1996). Saline-alkali soil improvement. Diagnosis, management and improvement. Beijing: Agriculture Press, 153
62. Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y. & Yoshimura, K. (2002). Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany, 53(372), 1305–1319. doi: 10.1093/jexbot/53.372.1305
63. Skliar, V. H. (2015). Ekolohichna fiziolohiia roslyn [Ecological physiology of plants]. Sumy: Universytetska knyha, 271 (in Ukrainian).
64. Smirnoff, N. & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057–1060. doi: 10.1016/0031-9422(89)80182-7
65. Suga, S., Komatsu, S. & Maeshima, M. (2002). Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant and Cell Physiology, 43(10),1229–1237. doi: 10.1093/pcp/pcf148
66. Tamura, T., Hara, K., Yamaguchi, Y., Koizumi, N. & Sano, H. (2003). Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiology, 131(2), 454–462. doi: 10.1104/pp.102.011007
67. Tanaka, N. & Mitsui, S. (2005). Expression and function of proteins during development of the basal regior in rice seedlings. Molecular and Cell Proteomics, 4(6), 796–808. doi: 10.1074/mcp.M400211-MCP200
68. Tanaka, N., Mitsui, S., Nobori, H., Nobori, H. & Komatsu, S. (2005). Expression and function of proteins during development of the basal region in rice seedlings. Molecular and Cell Proteomics, 4(6), 796–808. doi: 10.1074/mcp.M400211-MCP200
69. Vaidyanathan, Н., Sivakumar, P., Chakrabarty, R. & Thomas, G. (2003). Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) – differential response in salt-tolerant and sensitive varieties. Plant Science, 165(6), 1411–1418. doi: 10.1016/j.plantsci.2003.08.005
70. Wang, J., Zhang, H. & Allen, R.D. (1999). Over expression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant and Cell Physiology, 40(7), 725–732.
71. Wu, S. J, Ding, L. & Zhu, J. K. (1996). SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 8(4), 617–627. doi: 10.1105/tpc.8.4.617
72. Yamada, S., Katsuhara, M. & Kelly, W. B. (1995). A family of transcripts encoding water channel proteins: tissuespecific expression in the common ice plant. Plant Cell, 7, 1129–1142. doi: 10.1105/tpc.7.8.1129
73. Yamaguchi, T. & Blumwald, E. (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci., 10, 615–620. doi: 10.1016/j.tplants.2005.10.002
74. Yazici, I., Türkan, I., Sekmen, A.H. & Demiral, T. (2007). Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environmental and Experimental Botany, 61(1), 49–57. doi: 10.1016/j.envexpbot.2007.02.010
75. Yoshiba, Y., Kiyosue, T., Kataggiri, T., Ueda, H., Mizoguchi, T., Yamaguchi-Shinozaki, K., Wada, K., Harada, Y. & Shinozaki, K. (1995). Correlation between the induction of a gene for A-pyrroline-5-carboxylate synthetase and accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant Journal, 7(5), 751–760. doi: 10.1046/j.1365-313x.1995.07050751.x
76. Zhang, Xiaolei., Nie, Yuzhe & Li, Yuhua (2008). Cell signal transduction in plants under salt stress. Biotechnology Communications, 19(3), 468–471.
77. Zhao, Kefu (1995). Halophytes of China. International Symposium on High Salinity Tolerant Plants Volume: Biology of Salt Tolerant Plants, 284–293.
78. Zhu, H. & Suyder, M. (2003). Protein chip technology. Current Opininon in Chemical Biology, 7(1), 55–63. doi: 10.1016/S1367-5931(02)00005-4
79. Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 2001, 6 (2), 66–71 doi: 10.1016/S1360-1385(00)01838-0
80. Zhu, J. K. Regulation ofion homeostasis under salt stress (2003). Curr Opin Plant Biol, 6, 441. doi: 10.1016/s1369-5266(03)00085-2
81. Zhu, J.K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66–71. doi: 10.1016/S1360-1385(00)01838-0
82. Zhu, J.K. Regulation of ion homeostasis under salt stress (2003). Current Opininon in Plant Biology, 6(5), 441–445. doi: 10.1016/S1369-5266(03)00085-2
Published
2023-04-03
How to Cite
He, S. (2023). PHYSIOLOGICAL AND BIOCHEMICAL ASPECTS OF THE RESPONSE OF PLANTS TO SOIL SALININ (OVERVIEW). Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology, 50(4), 62-68. https://doi.org/10.32845/agrobio.2022.4.9