STUDY ON TOXICOLOGICAL EFFECTS OF HERBICIDE ATRAZINE ON ALFALFA SEEDLINGS
Abstract
Atrazine is a pre and post seedling herbicide that selects internal absorption conduction. Due to its high efficacy, low dosage, wide herbicide spectrum, and long residual efficacy period, it has been rapidly and widely used and promoted. From a global perspective, atrazine is currently one of the most widely used herbicides. However, due to its extensive use, it has been found to cause pesticide damage in soil and the environment. In order to study the effects of different concentrations of atrazine on the growth and physiological effects of alfalfa seedlings, six different concentrations of atrazine (0, 0.1, 0.2, 0.4, 0.8, 1.6 mg/L) were used to treat alfalfa seedlings using the pre seedling soil treatment method after indoor sowing. The growth and chlorophyll, malondialdehyde (MDA) content of alfalfa seedlings were measured. Firstly, determine the effect of atrazine on the growth of alfalfa. As the concentration of atrazine treatment increased, compared with the variant without treatment, the length of the aboveground and underground parts showed a significant inhibitory effect. Under the 1.6 mg/L treatment, the length of the aboveground part decreased by 26.3 %, while the length of the underground part decreased by 39.5 %. At the same time, it was found that the dry weight of alfalfa also showed a significant decreasing trend. At the maximum treatment concentration, the dry weight of the aboveground and underground parts decreased by 20.0 % and 14.3 %, respectively, The residue of atrazine in soil affects the growth and development of plants. The main mechanism of action of atrazine is to inhibit photosynthesis and hinder carbohydrate and photochemical synthesis reactions, preventing normal plant growth. The experiment found that as the concentration increased, the chlorophyll content in alfalfa leaves gradually decreased. Compared with the variant without treatment the chlorophyll content decreased by 48.0 %. At a concentration of 1.6 mg/L, the chlorophyll content decreased by 20.9 % compared to alfalfa seedlings without treatment. At the same time, the TBARS determination results showed that the content of MDA was the highest at a concentration of 0.8 mg/L, which was 2.50 times higher than on the control. However, 1.6 mg/L is the lowest, only 4.32 times that of with the variant without treatment. Atrazine causes membrane lipid peroxidation in alfalfa seedlings, leading to increased lipid permeability and toxicity at high concentrations. Therefore, attention should be paid to controlling the concentration of atrazine in production, and the dosage should not be arbitrarily increased to avoid causing drug harm.
References
2. Besplug, J., Filkowski, J., Burke, P., Kovalchuk, I., & Kovalchuk, O. (2004). Atrazine in-duces homologous recombination but not point mutation in the transgenic plant-based biomonitoring assay. Archives of Environmental Contamination and Toxicology, 46, 296–300. doi: 10.1007/s00244-003-3075-9
3. Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., & Zhu, Y. (2016). Degradation of atrazine by a novel Fentonlike process and assessment the influenceon the treated soil. Journal of Hazardous Materials, 312, 184–191. doi: 10.1016/j.jhazmat.2016.03.033
4. Chevrier, C., Limon, G., Monfort, C., Rouget, F., Garlantezec, R., Petit, C., Durand, G., & Cordier, S. (2011). Urinary biomarkers of prenatal atrazine exposure and adverse birth outcomes in the PELAGIE birth cohort. Environmental Health Perspectives, 119 (7), 1034–1041. doi: 10.1289/ehp.1002775
5. Correia, F. V., Macrae, A., Guilherme, L. R. G., & Langenbach, T. (2007). Atrazine sorption and fate in a Ultisol from humid tropical Brazil. Chemosphere, 67(5), 847–854. doi: 10.1016/j.chemosphere.2006.11.03
6. Fan, X. X., Chang, W., Feng, F. J., & Song, F. Q. (2018). Responses of photosynthesis-related parameters and chloroplast ultrastructure to atrazine in alfalfa (Medicago sativa L.) inoculated with arbuscular mycorrhizal fungi. Ecotoxicology and Environmental Safety, 166, 102–108. doi: 10.1016/j.ecoenv.2018.09.030
7. Gerhardt, K. E., Huang, X., Glick, B. R., & Greenberg, B. M., (2009). Phytoremediation and rhizoremediation of organic soil contaminants. Plant Science, 176, 20–30. doi: org/10.1016/j. plantsci. 2008. 09.14
8. Hess, D. (2000). Light-dependent herbicides: an overview. Weed Science, 48, 160–170. doi: 10.1614/0043-1745
9. Iriel, A., Novo, J. M., Cordon, G. B., & Lagorio, M. G. (2014). Atrazine and methyl viologen effects on chlorophyll-a fluorescence revis-ited– implications in photosystems emission and ecotoxicity assessment. Journal of Photochemistry and Photobiology, 90(1), 107–112. doi: 10.1111/php.121
10. Jablonowski, N. D., Schäffer, A., & Burauel, P. (2011). Still present after all these years: persistence plus potential toxicity raise questions about the use of atrazine. Environmental Science and Pollution Research, 18, 328–331. doi: 10.1007/s11356-010-0431-y
11. Kadian, N., Gupta, A., Satya, S., Mehta, R. K., & Malik, A. (2008). Biodegra-dation of herbicide (atrazine) in contaminated soil using various bioprocessed materials. Bioresource Technology, 99(11), 4642–4647. doi: 10.1016/j.biortech.2007.06.064
12. Karlsson, A. S., Weihermuller, L., Tappe, W., Mukherjee, S., & Spielvogel, S. (2016). Field scale boscalid residues and dissipation half-life estimation in a sandy soil. Chemosphere, 145, 163–173. doi: 10.1016/j.chemosphere. 2015.11.026
13. Kolpin, D. W., Thurman, E. M., & Linhart, S. M. (1998). The environmental occurrence of herbicides: the importance of degradates in ground water. Archives of Environmental Contamination and Toxicology, 35, 385–390. doi:org/10.1007/s002449900392
14. Kumar, A., & Singh, N. (2016). Atrazine and its metabolites degradation in mineral salts medium and soil using an enrichment culture. Environmental Monitoring and Assessment, 188(3), 1–12. doi:10.1007/s10661-016-5144-3
15. Kumar, V., Upadhyay, N., Singh, S., Singh, J., & Kaur, P. (2013). Thin-layer chromatography: comparative estimation of soil’s atrazine. Current World Environment, 8(3), 469–472. doi:10.12944/CWE.8.3.17
16. Lewis, S. E., Brodie, J. E., Bainbridge, Z. T., Rohde, K. W., Davis, A. M., Masters, B. L., & Schaffelke, B. (2009). Herbicides: a new threat to the Great Barrier. Environmental Pollution, 157(8). 2470–2484. doi: 10.1016/j.envpol.2009.03.006
17. Li, D. C., Velde, B., Li, F. M., Zhang, G. L., Zhao, M. S., & Huang, L. M. (2011). Impact of long–term alfalfa cropping on soil potassium content and clay minerals in a semi–arid loess soil in China. Pedosphere, 21(4), 522–531. doi: 10.1016/S1002-0160(11)60154-9
18. Li, X., Wu, T., Huang, H., & Zhang, S. (2012). Atrazine accumulation and toxic responses in maize Zea mays. Journal of Environmental Sciences, 24(002), 203–208. doi:0.1016/S1001-0742(11)60718-3
19. Liu, D. d., Liu, C., Wang, L., Zhao, J., & Ding, Y. C. (2017). Alleviation Effects of Degrading Bacteria on Atrazine Toxicity in Early Stage of Soybean Growth. Soybean Science, 36(6), 938–942. doi: 10.11861/j.issn.1000-9841.2017.06. 0938
20. Millie, D. F., & Hersh, C. M. (1987). Statistical characterizations of the atrazine-induced photosynthetic inhibition of Cyclotella meneghiniana (Bacilla riophyta). Aquatic Toxicology, 10(4), 239–249. doi:10.1016/0166-445X(87)90015-4
21. Mukherjee, P. K., Sondhia, S., Singh, P., & Sagar, R. L. (2019). Atrazine use to control weeds and its residue determination in fodder crops of maize and sorghum. Pesticide science and management, 2(51), 163–168. doi:10.5958/0974-8164.2019.000352
22. Niansheng, W., Jidong, G. U., & Shunshan, D. (2006). Eco-toxicity and biodegradation of atrazine in the environment. Pesticide science and management, 26(4), 552–560. doi:10.3321/j.issn:0253-2468.2006.04.003
23. Powell, E. R., Faldladdin, N., Rand, A.D., Pelzer, D., Schrunk, E.M., & Dhanwada, K.R. (2011). Atrazine exposure leads to altered growth of HepG2 cells. Toxicology in Vitro, 25(3), 644–651. doi:org/10.1016/j.tiv.2011.01.001
24. Qian, H., Tsuji, T., Endo, T., & Sato, F. (2014). PGR5 and NDH pathways in photosynthetic cyclic electron transfer respond differently to sublethal treatment with photosystem- interfering herbicides. Journal of Agricultural and Food Chemistry, 62, 4083–4089. doi: org/10.1021/jjf500143f
25. Salas, M. E., Lozano, M. J., Lopez, J. L., Draghi, W. O., Serrania, J., Tejerizo, G. A. T., Albicoro, F. J., Nilsson, J. F., Pistorio, M., Del Papa, M.F., Parisi, G., Becker, A., & Lagares, A. (2017). Specificity traits consistent with legume-rhizobia coevolution displayed by Ensifer meliloti rhizosphere colonization. Environmental Microbiology, 19 (9), 3423–3438. doi:oi.org/10.1111/1462-2920.13820
26. Sass, J.B., & Colangelo, A. (2006). European Union bans atrazine, while the United States negotiates continued use. International Journal of Occupational and Environmental Health, 12 (3), 260–267. doi:org/10.1179/0ep.2006.12.3.260
27. Sui, Y., & Yang, H. (2013). Bioaccumulation and degradation of atrazine in several Chinese ryegrass genotypes. Environmental Science: Processes & Impacts, 15, 2338–2344. doi: 10.1039/c3em00375b
28. Sullivan, D. J., Vecchia, A.V., Lorenz, D.L., Gilliom, R.J., & Martin, J.D. (2009). Trends in pesticide concentrations in corn-belt streams. 1996-2006. USGS Scientific In-vestigations Report 2009–5132. 75p.
29. Wan, N. S., Gu, J. D., & Duan, S. S. (2006). Study on ecotoxicity and biodegradation of atrazine, Journal of Environmental Science, 26(4), 552–560. doi:10.3321/j.issn:0253-2468.2006.04.003
30. Wang, Q. H., Zhang, W., Li, C., Xiao, B., & Wu, J .Y. (2011). Toxic effect of atrazine residue in water on Lysimachia chinensis. Journal of Applied and Environmental Biology, 17(6), 814–818. doi:10.3724/SP.J.1145.2011.00814
31. Wang, Q. H., Zhang, W., Que, X. E., Wu, J. Y., Zhang, G. A., & Xiao, B. (2011). Effects of atrazine residue on biomass and physiological characteristics of shallot. Journal of Plant Ecology, 35(2), 9–15. doi:10.3724/SP.J.1258.2011.00223
32. Wang, Y. Z., Ji, M. S., Huang, G. H., Qi, Z. Q., & Gu, Z .M. (2002). Determination of safe critical concentration of atrazine in soil for several crops, Journal of Shenyang Agricultural University, 33(1), 50–56. doi: 10.3969/j.issn.1000-1700.2002.01.009
33. Xia, F., Li, C., Chen, C. S., & Wang, Q. H. (2020). Physiological response of Iris pseudacorus to atrazine stress. Asian Journal of Ecotoxicology, 15(5), 255–263. doi:10.7524/AJE. 1673-5897.20190705001
34. Xing, H., Wang, C., Wuc, H., Chend, D., Li, S., & Xu, S. (2015). Effects of atrazine and chlorpyrifos on DNA methylation in the brain and gonad of the common carp. Comp. Journal of Physiology and Biochemistry, 168, 11–19. doi: 10.1016/j.cbpc.2014.11.002
35. Xu, X. H., Xiao, M., Fan, H. Y., & Gao, S, X. (2008). The effect of atrazine on the growth of Microcystis aeruginosa and Scenedesmus quadricaudata. Journal of Ecology and Rural Environment, 24(1), 5–13.
36. Yang, M., Lin, Z. S., Yao, Z. W., & Ma, Y .A. (2006). Research progress of triazine herbicide atrazine. Pesticide science and management, 27(11), 7–18. doi: 10.3969/j.issn.1002-5480.2006.11.010
37. Yang, X. F., He, Y. H., Liu, B., Guo, H., Xue, L., Duan, Y. W., Hu, H., Gao, F., Zhou, L., & Zhang, J, J. (2023). Alfalfa’s response to atrazine stress and its secreted atrazine metabolites. Ecotoxicology and Environmental Safety, 241. 114–123. doi: 10.1016/j.ecoenv.2022.113780
38. Yin, X. L., Jiang, L., Song, N. H., & Yang, H. (2008). Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. Journal of Agricultural and Food Chemistry, 56, 4825–4831. doi:10.1021/jf800795v
39. Zhang, J. J., Cao, W. X., Xi, P. X., Li, L., Qiao, S. T., Luo, H. W., Zhang, J. Y., Liu, X. Y., & Du, N. S. (2021). S–glycosylation of fluensulfone in tomatoes: an important way of fluensulfone metabolism. Journal of Agricultural and Food Chemistry, 69 (44), 12974–12984. doi;org/10.1021/acs.jafc.1c04725
40. Zhang, J. J., Gao, S., Xu, J. Y., Lu, Y. C., Lu, F. F., Ma, L.Y., Su, X. N., & Yang, H. (2017). Degrading and phytoextracting atrazine residues in rice (Oryza sativa) and growth media intensified by a phase II mechanism modulator. Environmental Science & Technology, 51, 11258–11268. doi: 10.1021/acs.est.b02346
41. Zhang, J. J., Lu, Y. C., & Yang, H. (2014). Chemical modification and degradation of atrazine in Medicago sativa through multiple pathways Journal of Agricultural and Food Chemistry, 62, 9657–9668. doi: 10.1021/jf503221c
42. Zhang, J. J., Lu, Y. C., Zhang, S.H., Lu, F. F., & Yang, H. (2016). Identification of transcriptome involved in atrazine detoxification and degradation in alfalfa (Medicago sativa) exposed to realistic environmental contamination. Ecotoxicology and Environmental Safety, 130. 103–112. doi: 10.1016/j.ecoenv.2016.04.009
43. Zhang, J. J., Yi, C. L. , Jin, J. Z. , Li, R. T. , & Hong, Y. (2014). Accumulation and toxicological response of atrazine in rice crops. Ecotoxicology and Environmental Safety, 102, 105–112. doi: 10.1016/j.ecoenv.2013.12.034
44. Zhang, J. J., Zhou, Z. S., Song, J. B., Liu, Z. P., & Yang, H. (2012). Molecular dissection of atrazine-responsive transcriptome and gene networks in rice by high-throughput sequencing. Journal of Hazardous Materials, 219–220, 57–68. doi: 10.1016/j.jhazmat.2012.03.041
45. Zhang, K. Y., Zu, Y. Q., Chen, J. J., & Yang, J. (2014). Effects of atrazine sress on the growth of pennisetum hydridum. Agricultural Science & Technology, 12(21), 1653–1656. doi: 10.11654/jaes.2014.12.013
46. Zhao, S. Z. , Shao, J. W., & Zhi, M. Y. (2008). Biological detection and analysis of mercury toxicity to alfalfa (medicago sativa) plants. Chemosphere, 70(8), 1500–1509. doi: 10.1016/j.chemosphere. 2007.08.028.
47. Zhao, X., Wang, L., Ma, F., Bai, S., Yang, J., & Qi, S. (2017). Pseudomonas sp., ZXY-1 a newly isolated and highly efficient atrazine-degrading bacterium and optimization of biodegradation using response surface methodology. Journal of Environmental Sciences, 54. 152–159. doi: 10.1016/j.Jes.2016.06.010