ENERGY SAVING OF TRANSPORT-TECHNOLOGICAL UNITS OF VARIABLE MASS WHEN PERFORMING TECHNOLOGICAL OPERATIONS IN CROP PRODUCTION
Abstract
The article considers the problems of energy saving of transport and transport-technological units. For transporttechnological units, the execution of a technological operation is associated with more complex dynamic processes, since the engine power is spent on the transport and technological parts. The movement of combined units with a variable mass, such as sowing complexes or complexes for applying mineral fertilizers and plant protection products to the soil, is especially complex from the research point of view. The paper defines the conditions for energy saving for a transport-technological unit when performing a technological operation at maximum acceleration, speed and engine load. The minimum fuel consumption can be achieved when the transport-technological unit is moving without speed fluctuations. During the operation of the transport-technological unit, it is impossible to achieve a constant speed or no acceleration (constant movement) due to the inequality of the tractor's traction force and the resistance to movement. That is, in real explication, even with a constant movement mode, the deviation of the actual speed. To monitor the dynamic parameters of transport and technological units, it is proposed to use a complex that allows you to study changes in the unit's operating parameters with high accuracy and select its operating modes. When analyzing the acceleration (deceleration) of the unit in three planes (longitudinal, transverse and vertical), the starting point is the condition of steady motion (absence of accelerations or decelerations). It is almost impossible to achieve this mode of motion, but the minimum additional energy consumption will correspond to the mode with the smallest amplitude of oscillations. When external factors change in the engine's operation, three possible modes may arise: underload, overload and nominal mode. The mode of operation of the unit can be characterized by the nature of the change in the vector of total acceleration (deceleration), its magnitude and direction. A dynamic analysis method is proposed that uses a geometric interpretation of the process of movement of transport and technological units and allows you to select their operating modes with the lowest additional energy consumption. The selected mode can be characterized by the specific gravity of the ellipsoid core, which can be determined by the results of statistical processing of the results of the study of acceleration (deceleration) oscillations of the unit. It has been determined that one of the current directions for improving the energy saving of transport and technological units can be the activation of the axles of the trailer or semi-trailer. This approach will allow using a significantly larger part of the weight of the cargo when forming the coupling weight of the unit and, as a result, will improve the fuel efficiency of the tractor.
References
2. Artiomov N., Anikeev A., Kaluzhnij A., Sirovitskiy K., & Kolodiazhnyi I. (2022). Investigation of agricultural unit loads in non-established mode of motion when performing technological operations. Engineering for rural development. Jelgava, 675-681. DOI: 10.22616/ERDev.2022.21.TF216.
3. Artomov M.P. (2010): Do doslidzhennia dynamiky kolisnoho silskohospodarskoho mashynno-traktornoho ahrehatu [To study the dynamics of a wheeled agricultural machine-tractor unit]. Konstruiuvannia, vyrobnytstvo ta ekspluatatsiia silskohospodarskykh mashyn. Vol. 40(1). P. 151-155. [in Ukrainian].
4. Diundyk S.M., Antoshchenkov R.V., Antoshchenkov V.M. (2018): Do doslidzhennia dynamiky bahatoelementnykh mobilnykh mashyn. [To study the dynamics of multi-element mobile machines]. Zbirnyk naukovykh prats Natsionalnoi akademii Natsionalnoi hvardii Ukrainy. Vol. 1 (31). P. 52–57.
5. Kalchenko B.I., [ta in.] (2021): Dynamika rukhu kolisnykh traktoriv. [Dynamics of wheeled tractors]. Monohrafiia. Kharkiv., Miroshnychenko O.A., 320 p. [in Ukrainian].
6. Kalinin Ye.I. (2018): Formuvannia systemnykh vlastyvostei transportno-tekhnolohichnykh ahrehativ zminnoi masy. [Formation of system properties of transport and technological units of variable mass]. Avtoref. dys. ... d-ra tekhn. nauk : 05.22.20. KhNADU. Kharkiv, 40 p. [in Ukrainian].
7. Kalinin, Ye. (2020): Analiz dynamiky transportno-tekhnolohichnykh ahrehativ yak system zminnoi masy. [Analysis of the dynamics of transport and technological units as variable mass systems]. Inzheneriia pryrodokorystuvannia (2(12), P. 38-43. http://journal.khntusg.com.ua/index.php/enm/article/view/155.
8. Kozhushko A.P. (2021): Dynamichnyi analiz ta metody polipshennia plavnosti khodu kolisnoho traktora pry transportuvanni ridkykh vantazhiv. [Dynamic analysis and methods of improving the smoothness of a wheeled tractor when transporting liquid cargo]. Avtoref. dys. ... d-ra tekhn. nauk. 05.22.02. NTU "KhPI". Kharkiv, 44 p. [in Ukrainian].
9. Lebedev A, Shuliak M, Khalin S, Lebedev S, Szwedziak K, Lejman K, Niedbała G, Łusiak T. (2023): Methodology for Assessing Tractor Traction Properties with Instability of Coupling Weight. Agriculture. 2023; 13(5):977. https://doi.org/10.3390/agriculture13050977
10. Lebedev A.T., Artemov M.P. (2013): Obgruntuvannia efektyvnosti vykorystannia gruntoobrobnykh mashynnotraktornykh ahrehativ modeliuvanniam partsialnykh pryskoren. [Rationalization of the effectiveness of the use of soil tillage machine-tractor units by modeling partial]. Doslidnitske., Leonid Pogorilyy Ukrainian Scientific Research Institute, Collection of scientific papers. Vol. 17 (31). p 2. P. 280-293. [in Ukrainian].
11. Lebedev A.T., Lebedev S.A., Korobko A.I. (2018): Kvalimetriia ta metrolohichne zabezpechennia vyprobuvan traktoriv. [Qualimetry and metrological of tractors testing]. Kharkiv., Miskdruk. 394 p. [in Ukrainian].
12. Lebedev, A., Shuliak, M., Lebedev, S., Khalin, S., Haidai, T., Kholodov, A., Pirogov, V., & Shaposhnyk, V. (2024): Determining conditions for providing maximum traction efficiency of tractor as part of a soil tillage unit. Eastern-European Journal of Enterprise Technologies, 2024 (1 (127), 6–14. https://doi.org/10.15587/1729-4061.2024.297902
13. Shuliak M.L. (2016): Oblast funktsionuvannia mashyno-traktornoho ahrehatu, shcho aproksymovana poverkhneiu druhoho poriadku. [The area of operation of a machine-tractor unit, approximated by a second-order surface]. VNAU. Seriia «Tekhnika enerhetyka transport APK». T. 1, Vol. 1(93). P. 28-31. [in Ukrainian].
14. Shuliak M.L. (2017): Eksperymentalne pidtverdzhennia alhorytmu keruvannia rezhymamy roboty transportnoho ahrehatu. [Experimental confirmation of the algorithm for controlling the operating modes of a transport unit]. LNTU. Seriia «Silskohospodarski mashyny». Vol. 36. P. 182-187. [in Ukrainian].
15. Shuliak M.L., Lebediev A.T., Artomov M.P., Maltsev V.P. (2017): Eksperymentalne doslidzhennia alhorytmu keruvannia rezhymamy roboty transportnoho ahrehatu. [Experimental study of the algorithm for controlling the operating modes of a transport unit]. Systemy upravlinnia, navihatsii ta zviazku. Vol. 3(43). P. 38-42. [in Ukrainian].