IMPLEMENTATION OF INDUSTRY 4.0 AND CIRCULAR ECONOMY STRATEGIES IN ALUMINUM SCRAP PROCESSING
Abstract
In today’s economic and social and political conditions in Ukraine reducing import dependence and production costs, preservation of the environment, and utilization of scrap metal streams are of particular importance. The country has practically lost its own aluminum production, while aluminum is widely applied in all the industries; additionally a significant amount of aluminum scrap is expected as a result of military actions. Aluminum is a circular material that does not lose its properties during processing. One of the ways for improving the economic situation in Ukraine and transition to a circular economy is the production of aluminum alloys from secondary raw materials and products from them. Recycling requires only nearly 5 % of the energy needed to produce the primary metal, resulting in significant decrease of greenhouse gasses emissions, economy efficiency and conservation of natural resources. Circularity plays a leading role in achievement of goals of sustainable development. Production of secondary aluminum alloys is considered as a sustainable activity. However, the use of recycled aluminum alloys for the manufacturing of responsible parts, e.g. used in aviation and automotive industries, is possible with the use of effective sorting and metallurgical processing. The literature search had shown that among the most promising Industry 4.0 technologies in regard to aluminum recycling are the Internet of Things, Virtual Reality, Augmented Reality and artificial intelligence. The world’s leading experience has proven the effectiveness of the use of simulated reality, in particular simulated heat treatment, which is an integral part of the aluminum alloys production technology. Machine vision and machine learning are important for sorting of metal scrap, acting its classification. A wide range of studies is dedicated to the specifics of Laser Induced Breakdown Spectroscopy applications, providing smart sorting of aluminum scrap. Some Industry 4.0 technologies are important in the context of occupational safety: digital twins can provide guidance for work performance, cobots can eliminate physical and psycho-physiological harmful and dangerous occupation effects influencing a human, etc. Circular economy (through recycling) and Industry 4.0 are promising solutions to mitigate the negative consequences of manufacturing. Potential and challenges from linking these two paradigms with secondary production, meaning adoption of Industry 4.0 in aluminum recycling, have been analyzed.
References
2. Andryeyeva, N., Nikishyna, O., Burkynskyi, B., Khumarova, N., Laiko, O., Tiutiunnyk, H. (2021). Methodology of analysis of the influence of the economic policy of the state on the environment. Insights into Regional Development, 2021, 3 (2), 198 – 212. https://doi.org/10.9770/IRD.2021.3.2(3)
3. Bertram, M., Ramkumar, S,, Rechberger, H., Rombach, G., Bayliss, C., Martchek, K. J., Müller, D. B., Liu, G. (2017). A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products. Resources, Conservation and Recycling, 125, 48–69. https://doi.org/10.1016/j.resconrec.2017.05.014=view
4. Bhattacharya, J. (2022). How Aluminum Industries can Get Involved in Environmental Stewardship. Journal of Mines, Metals and Fuels, 70 (4), 161–164. 2022. https://doi.org/0.18311/jmmf/2022/30062
5. Bielikov, S. B., Volchok, I. P., Shyrokobokova, N. V., Povzlo V. M. (2015). Koroziina stiikist vtorynnykh syluminiv pislia lazernoi obrobky [Corrosion resistance of secondary silumins after laser processing]. Fizyko-khimichna mekhanika materialiv. Spetsvypusk «Problemy korozii ta protykoroziinoho zakhystu materialiv», 10, 264–267 (in Ukrainian).
6. Blomeke, S.; Rickert, J.; Mennenga, M.; Thiede, S.; Spengler, T.S.; Herrmann, C. (2020). Recycling 4.0 – Mapping smart manufacturing solutions to remanufacturing and recycling operations. Procedia CIRP, (90), 600-605. https://doi.org/10.1016/j.procir.2020.02.045
7. Bryzhan, I. A. (2016). Determining key industrial sectors for greening of Ukrainian economy. Actual Problems of Economics. № 1 (175), 173–181.
8. Bureau of International Recycling (BIR) Annual report 2019, link: https://www.bir.org/publications/annual-reports/download/648/1000000235/36?The energy required to produce materials: Constraints on energy-intensity improvements, parameters of demand. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371. https://doi.org/10.1098/rsta.2012.0003
9. Calinescu, T., Likhonosova, G., Zelenko, O. (2023). Circular Economy: Ukraine’s Reserves and the Consequences of the Global Recession. In: Koval, V., Kazancoglu, Y., Lakatos, ES. (eds) Circular Business Management in Sustainability. ISCMEE 2022. Lecture Notes in Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-23463-7_16
10. Cao, B., Wang, Z., Shi, H., Yin, Y. Research and Practice on Aluminum Industry 4.0. Sixth International Conference on Intelligent Control and Information Processing (pp. 517–521). November 26–28, 2015. Wuhan, China. https://doi.org/10.1109/ICICIP.2015.7388226
11. Capuzzi, S., Timelli, G. (2018). Preparation and Melting of Scrap in Aluminum Recycling: A Review. Metals, 8 (4), 249. https://doi.org/10.3390/met8040249
12. Chatterjee, K. K. (2007). Uses of metals and metallic minerals. New Age International.
13. Chauhan, C., Parida, V., Dhir, A. (2022). Linking circular economy and digitalisation technologies: A systematic literature review of past achievements and future promise. Technological Forecasting & Social Change, 177. https://doi.org/10.1016/j.techfore.2022.121508
14. Circular Aluminium Action Plan. A strategy for achieving aluminium’s full potential for circular economy by 2030. European Aluminum. https://european-aluminium.eu/media/2903/european-aluminium-circular-aluminium-action-plan.pdf
15. David, E., Kopac, J. (2015). Use of Separation and Impurity Removal Methods to Improve Aluminium Waste Recycling Process. Materials Today: Proceedings, 2, 5071–5079. https://doi.org/10.1016/j.matpr.2015.10.098
16. Deineko, L., Tsyplitska, O., Deineko, O. (2019). Opportunities and barriers of the Ukrainian industry transition to the circular economy. Environmental Economics, 10 (1), 79–92. https://doi:10.21511/ee.10(1).2019.06
17. Díaz-Romero, D., Sterkens, W., Van den Eynde, S., Goedem´e, T., Dewulf, W., Peeters, J. (2021). Deep learning computer vision for the separation of Cast- and Wrought-Aluminum scrap. Resources, Conservation and Recycling, 172. https://doi.org/10.1016/j.resconrec.2021.105685
18. Díaz-Romero, D. J., Van den Eynde, S., Sterkens, W., Eckert, A., Zaplana, I., Goedem´e, T., Peeters, J. (2022). Real-time classification of aluminum metal scrap with laser-induced breakdown spectroscopy using deep and other machine learning approaches. Spectrochimica Acta Part B: Atomic Spectroscopy, 196. https://doi.org/10.1016/j.sab.2022.106519
19. Engelen, B., De Marelle, D., Diaz-Romero, D. J., Van den Eynde, S., Zaplana, I., Peeters, J. R., Kellens, K. (2022). Techno-Economic Assessment of Robotic Sorting of Aluminium Scrap. Procedia CIRP, 105, 152–157. https://doi.org/10.1016/j.procir.2022.02.026
20. Gardashuk, T. (2022). Environmental Threats of War in Ukraine. Envigogika, 17 (1). https://doi.org/10.14712/18023061.639
21. Gaustad, G., Olivetti, E., Kirchain, R. (2012). Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resources, Conservation and Recycling, 58, 79–87. https://doi.org/10.1016/j.resconrec.2011.10.010
22. Global aluminum consumption projections from 2021 to 2029. Statista. https://bit.ly/3WJz33O
23. Graedel, T.E., Reck, B.K., Ciacci, L., Passarini, F. (2019). On the Spatial Dimension of the Circular Economy. Resources, 8 (1), 32. https://doi.org/10.3390/resources8010032
24. Gutowski, T. G., Sahni, S., Allwood, J. M., Ashby, M. F., Worrell E. (2013) The energy required to produce materials: Constraints on energy-intensity improvements, parameters of demand. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371. https://doi.org/10.1098/rsta.2012.0003
25. Han, F., Liu, Y., Liu, W., Cui, Z. (2017). Circular economy measures that boost the upgrade of an aluminum industrial park. Journal of Cleaner Production, 168, 1289–1296. https://doi.org/10.1016/j.jclepro.2017.09.115
26. Hao, H., Qiao, Q., Liu, Z., Zhao, F. (2017). Impact of recycling on energy consumption and greenhouse gas emissions from electric vehicle production: The China 2025 case. Resources, Conservation and Recycling, 122, 114–125. https://doi.org/10.1016/j.resconrec.2017.02.005
27. Hao, Р., Geng, Y., Hang, W. (2016). GHG emissions from primary aluminum production in China: Regional disparity and policy implications. Applied Energy, 166, 264–272. https://doi.org/10.1016/j.apenergy.2015.05.056
28. Haraldsson, J., Johansson, M. T. (2018). Review of measures for improved energy efficiency in production-related processes in the aluminium industry – From electrolysis to recycling. Renewable and Sustainable Energy Reviews, 93, 525–548. https://doi.org/10.1016/j.rser.2018.05.043
29. Haupt, M., Hellweg, S. (2019). Measuring the environmental sustainability of a circular economy. Environmental and Sustainability Indicators, 1–2. https://doi.org/10.1016/j.indic.2019.100005
30. Herrero-Luna, S., Ferrer-Serrano, M., Latorre-Martinez, M. P. (2022). Circular economy and innovation: a systematic literature review. Central European Business Review, 11 (1), 65–84. https://doi.org/10.18267/j.cebr.275
31. Hurtalova, L., Tillova, E., Chalupova, M. (2015). Possibilities of Fe-rich Phases elimination with using heat treatment in secondary Al-Si-Cu cast alloys. Metalurgija, 54 (1), 39–42.
32. Indicators of economy in Ukraine. https://www.worlddata.info/europe/ukraine/economy.php
33. International Aluminium Institute. Global Aluminium Cycle 2021. https://alucycle.international-aluminium.org/publicaccess/
34. Jensen, J.P.; Remmen, A. (2017). Enabling Circular Economy through product stewardship. Procedia Manufacturing, (8), 377-384. https://doi.org/10.1016/j.promfg.2017.02.048
35. Jimenez-Martin, A.; Mateos, A.; Hernandez, J.Z. (2021). Aluminium Parts Casting Scheduling Based on Simulated Annealing. Mathematics, 9 (7), 741. https://doi.org/10.3390/math9070741
36. Jovicevic-Klug, M., Tegg, L., Jovicevic-Klug, P., Drazic, G., Almasy, L., Lim, B., Cairney, J. M., Podgornik, B. (2022). Multiscale modification of aluminum alloys with deep cryogenic treatment for advanced properties. Journal of Materials Research and Technology, 21, 3062–3073. https://doi.org/10.1016/j.jmrt.2022.10.089
37. Kara, S.; Hauschild, M.; Sutherland, S.; Mc. Alooned, T. (2022). Closed-loop systems to circular economy: A pathway to environmental sustainability? CIRP Annals, 71 (2), 505–528. https://doi.org/10.1016/j.cirp.2022.05.008
38. Kerin, M.; Pham, D. T. (2019). A review of emerging industry 4.0 technologies in remanufacturing. Journal of Cleaner Production, 237, 1–16. https://doi.org/10.1016/j.jclepro.2019.117805
39. Khalatur, S., Stachowiak, Z., Zhylenko, K., Honcharenko, O., Khalatur, O. (2019). Financial instruments and innovations in business environment: European countries and Ukraine. Investment Management and Financial Innovations, 16 (3), 275–291. https://doi:10.21511/imfi.16(3).2019.25
40. Kotadia, H. R., Qian, M., Das, A. (2020). Microstructural modification of recycled aluminium alloys by high-intensity ultrasonication: Observations from custom Al–2Si–2Mg–1.2Fe–(0.5,1.0)Mn alloys. Journal of Alloys and Compounds, 823. https://doi.org/10.1016/j.jallcom.2020.153833
41. Koval, V., Olczak, P., Vdovenko, N., Boiko, O., Matuszewska, D., Mikhno, I. (2021). Ecosystem of Environmentally Sustainable Municipal Infrastructure in Ukraine. Sustainability, 13 (18). https://doi.org/10.3390/su131810223
42. Kupalova, H., Ignatyuk, A., Goncharenko, N., Andrusiv, U., Kopetska, Y. (2021). Efficient use of energy resources in the context of sustainable development of the pulp and paper industry of Ukraine. Second International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2021). https://doi.org/10.1051/e3sconf/202128005011
43. Kutsevych, M., Yara, O., Golovko, L., Terpeliuk, V. (2020). Sustainable Approaches to Waste Management: Regulatory and Financial Instruments. European Journal of Sustainable Development, 9 (2), 163–171. https://doi.org/10.14207/ejsd.2020.v9n2p163
44. Kuzemko, C., Blondeel, M., Dupont, C., Brisbois, M. C. (2022). Russia’s war on Ukraine, European energy policy responses & implications for sustainable transformations. Energy Research & Social Science, 93.
45. Li, R., Jiang, H., Sotnyk, I., Kubatko, O., & Almashaqbeh, Y. A. I. (2020). The CO2 Emissions Drivers of Post-Communist Economies in Eastern Europe and Central Asia. Atmosphere, 11 (9). https://doi.org/10.3390/atmos11091019
46. Manasijevic, S., Marcovic, S., Acimovic, Z. (2013). Effect of heat treatment on the microstructure and mechanical properties of piston alloys. Materiali i technologii, 47 (5), 585–591.
47. Mashchenko, M., Klimenko, O., Dykan, O. (2017). Optimization of expenditures on environmental actions in Ukraine. Technology Audit and Production Reserves, 5 (37), 25–30.
48. Mitiaiev, O. A., Volchok, I. P., Loza, K. M., Hnatenko, O. V., Lukinov V. V. (2014). Zabezpechennia vysokoi yakosti vtorynnykh syluminiv [Ensuring the high quality of secondary silumins]. Visnyk dvyhunobuduvannia, 1, 136–142 (in Ukrainian).
49. Morone, P., Sica, E., Makarchuk, O. (2020). Chapter 1 – From waste to value: assessing the pressures toward a sustainability transition of the Ukrainian waste management system, Innovation Strategies in Environmental Science Elsevier, 1-32. https://doi.org/10.1016/B978-0-12-817382-4.00001-0
50. Mykoliuk O. (2018). Priority trends in ensuring the energy security of Ukraine in the terms of Eurointegration. Innovative technologies and scientific solutions for industries. 1 (3), 116–123. https://doi.org/10.30837/2522-9818.2018.3.116
51. Napp, T. A., Gambhir, A., Hills, T. P., Florin, N., Fennell, P. S. (2014). A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries. Renewable and Sustainable Energy Reviews. Vol. 30, 616–640. https://doi.org/10.1016/j.rser.2013.10.036
52. Napriamky derzhavnoi polityky shchodo ekolohizatsii natsionalnoi ekonomiky [Directions of state policy regarding the greening of the national economy]. Analytical note. National Institute for Strategic Studies of Ukraine (in Ukrainian).https://niss.gov.ua/doslidzhennya/nacionalna-bezpeka/napryamki-derzhavnoi-politiki-schodo-ekologizacii-nacionalnoi
53. Ostapenko, O. (2021). Estimation of tendencies of transforming the energy sectors of world, European Union and Ukraine in the perspective to 2050 with using the renewable energy sources in the concept of sustainable development. Social capital: vectors of development of behavioral economics: collective monograph, 100–139, ACCESS Press Publishing house, Veliko Tarnovo, Bulgaria. https://doi.org/10.46656/book.2021.social.capital
54. Pedneault, J., Majeau-Bettez, G., Krey, V., Margni, M. (2021). What future for primary aluminium production in a decarbonizing economy? Global Environmental Change, 69. https://doi.org/10.1016/j.gloenvcha.2021.102316
55. Penumuru, D. P.; Muthuswamy, S.; Karumbu, P. (2020). Identification and classification of materials using machine vision and machine learning in the context of industry 4.0. Journal of Intelligent Manufacturing, 31, 1229–1241. https://doi.org/10.1007/s10845-019-01508-6
56. Petrović, S.N., Diachuk, O., Podolets, R., Semeniuk, A., Bühler, F., Grandal, R., Boucenna, M., Balyk, O. (2021). Exploring the Long-Term Development of the Ukrainian Energy System. Energies, 14 (22). https://doi.org/10.3390/en14227731
57. Pidorycheva, I. Yu., & Antoniuk, V. P. (2022). Modern development trends and prospects for innovation in the technologyintensive sectors of Ukraine’s industry. Science and Innovation. 18 (1), 3-19. https://doi.org/10.15407/scine18.01.003
58. Raabe, D., Ponge, D., Uggowitzer, P. J., Roscher, M., Paolantonio, M., Liu, C., Antrekowitsch, H., Kozeschnik, E., Seidmann, D., Gault, B., De Geuser, F., Deschamps, A., Hutchinson, C., Liu, C., Li, Z., Prangnell, P., Robson, J., Shanthraj, P., Vakili, S., Sinclair, C., Bourgeois, L., Pogatscher, S. (2022). Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Progress in Materials Science, 128.
59. Racioppi, F.,Rutter, H., Nitzan, D., Borojevic, A., Carr, Z., Grygaski, T. J., Jarosinska, D., Netanyahu, S., Schmoll, O., Stuetzle, K., Van Den Akker, A., Kluge, H. H. P. (2022). The impact of war on the environment and health: implications for readiness, response, and recovery in Ukraine. The Lancet Discovery Science, 400 (10356), 871-873. https://doi.org/10.1016/S0140-6736(22)01739-1
60. Rady, M. H., Mustapa, M. S., Wagiman, A., Shamsudin, S., Lajis, M. A., Alimi, S. A., Mansor, M. N., Harimon, M. A. (2020). Effect of the Heat treatment on Mechanical and Physical Properties of Direct Recycled Aluminium Alloy (AA6061). International Journal of Integrated Engineering, 12 (3), 82–-89. https://doi.org/10.30880/ijie.2020.12.03.011
61. Rawtani, D., Gupta, G., Khatri, N., Rao, P. K., Hussain, C. M. (2022). Environmental damages due to war in Ukraine: A perspective, Science of The Total Environment, 850. https://doi.org/10.1016/j.scitotenv.2022.157932
62. Regueiro, L., Newton, R., Soula, M., Méndez, D., Kok,B., Little, D. C., Pastres, R., Johansen, J., Ferreira M. (2022). Opportunities and limitations for the introduction of circular economy principles in EU aquaculture based on the regulatory framework. Journal of Industrial Ecology, 26, 2033–2044.
63. Resti, Yu. (2015). Dependence in Classification of Aluminium Waste. Journal of Physics: Conference Series, 622. https://10.1088/1742-6596/622/1/012052
64. Ruda, M. V., Myrka, Ya. V. (2020). Tsyrkuliarni biznes-modeli v Ukraini [Circular Business Models in Ukraine]. Management and Entrepreneurship in Ukraine: the stages of formation and problems of development, 2 (1), 107–121 (in Ukrainian). http://doi.org/10.23939/smeu2020.01.107
65. Saevarsdottir, G., Kvande, H., Welch, B.J. (2020). Aluminum Production in the Times of Climate Change: The Global Challenge to Reduce the Carbon Footprint and Prevent Carbon Leakage. JOM, 72, 296–308. https://doi.org/10.1007/s11837-019-03918-6
66. Saevarsdottir, G., Magnusson, T. & Kvande, H. (2021). Reducing the Carbon Footprint: Primary Production of Aluminum and Silicon with Changing Energy Systems. Journal of Sustainable Metallurgy, 7, 848–857. https://doi.org/10.1007/s40831-021-00429-0
67. Schlemminger, A. (2018). Smart aluminium production processes in times of Industry 4.0. Aluminium International Today, 31 (4), 44. https://www.proquest.com/docview/2117727491?pq-origsite=gscholar&fromopenview=true
68. Schlesinger, M. E. (2013). Aluminum recycling: Second edition (2013). https://doi.org/10.1201/b16192
69. Schlund, S.; Baaij, F. (2018). Describing the technological scope of Industry 4.0 – a review of survey publications. LogForum, 14 (3), 341–353. https://doi.org/10.17270/J.LOG.2018.289
70. Shin, S.-S., Kim, E.-S., Yeom, G.-Y., Lee, J-C. (2012). Modification effect of Sr on the microstructures and mechanical properties of Al–10.5Si–2.0Cu recycled alloy for die casting. Materials Science and Engineering: A, 532, 151–157. https://doi.org/10.1016/j.msea.2011.10.076
71. Shmygol, N., Galtsova, O., Shaposhnykov, K., Bazarbayeva, S. (2021). Environmental management policy: an assessment of ecological and energy indicators and effective regional management (on the example of Ukraine). Energy policy journal, 24 (4), 43–60. https://doi.org/10.33223/epj/143836
72. Shpak, N., Kuzmin, O., Melnyk, O., Ruda, M., Sroka, W. (2020). Implementation of a Circular Economy in Ukraine: The Context of European Integration. Resources, 9 (8), 96. https://doi.org/10.3390/resources9080096
73. Skuibida, O. L. Perspektyvy dekarbonizatsii promyslovosti Ukrainy dlia zapobihannia zminy klimatu [Prospects of decarbonisation of industry of Ukraine to prevent climate change]. Eko Forum – 2021: zbirnyk tez dopovidei V spetsializovanoho mizhnarodnoho Zaporizkoho ekolohichnoho forumu (pp. 38–39). September 14–16, 2021. Zaporizhzhia, Ukraine: Zaporizka torhovo–promyslova palata.
74. Slobodianiuk, K. O., Klochkovskyi, O. V. Innovatsii yak faktor pidvyshchennia konkurentospomozhnosti produktsii vitchyznianoho mashynobuduvannia [Innovations as a factor increasing the competitiveness of domestic engineering products]. Suchasna molod v sviti informatsiinykh tekhnolohii»: materialy III VseUkrainskoi naukovo-praktychnoi internetkonferentsii molodykh vchenykh ta zdobuvachiv vyshchoi osvity prysviachenoi Dniu nauky (pp. 50–52). May 16, 2022, Kherson, Kropyvnytskyi, Ukraine: Knyzhkove vydavnytstvo FOP Vyshemyrskyi V. S. (in Ukrainian).
75. Sosnovska, O., Shtepa, O. (2020).Actual Aspects of Circular Economy Development. Advances in Economics, Business and Management Research, volume 129: proceedings of the III International Scientific Congress Society of Ambient Intelligence 2020 (ISC-SAI 2020), 201–207. https://doi.org/10.2991/aebmr.k.200318.025
76. Sotnyk, I. N., Dehtyarova, I. B., Kovalenko, Y. V. (2015). Current threats to energy and resource efficient development of Ukrainian economy. Actual Problems of Economics. № 11 (173), 137–145.
77. Stewart, R., Niero, M., Murdock, K., Olsen, S. I. (2018). Exploring the Implementation of a Circular Economy Strategy: The Case of a Closed-loop Supply of Aluminum Beverage Cans. Procedia CIRP, 69, 810–815. https://doi.org/10.1016/j.procir.2017.11.006
78. Schumacher, A., Erol, S., Sihn, W. (2016). A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises. Procedia CIRP, 52, 161-166. https://doi.org/10.1016/j.procir.2016.07.040.
79. Sustainable Development Strategy for Ukraine by 2030. United Nations Development Programme. https://www.undp.org/ukraine/publications/sustainable-development-strategy-ukraine-2030
80. Sviezhentsev, O. O. (2016). Perspektyvy rozvytku mashynobudivnoi haluzi Ukrainy: formuvannia novoi kontseptsii promyslovoi polityky [Prospects for the development of the machine-building industry of Ukraine: the formation of a new concept of industrial policy]. Upravlinnia rozvytkom, 2 (184), 12–19 (in Ukrainian).
81. Takezawa, T., Uemoto, M. & Itoh, K. (2015). Combination of X-ray transmission and eddy-current testing for the closed-loop recycling of aluminum alloys. Journal of Material Cycles and Waste Management, 17, 84–90. https://doi.org/10.1007/s10163-013-0228-4
82. Trushkina N. (2022). Green economy in the conditions of modern challenges: conceptual frameworks. International Science Journal of Management, Economics & Finance, 1 (1), 1–6. https://doi.org/10.46299/j.isjmef.20220101.1
83. Tu, Q., Hertwich E. G. (2021). A mechanistic model to link technical specifications of vehicle end-of-life treatment with the potential of closed-loop recycling of post-consumer scrap alloys. Journal of Industrial Ecology, 26 (3), 667–1154. https://doi.org/10.1111/jiec.13223
84. Ukraine Recovery Plan. https://recovery.gov.ua.
85. Van den Eynde, S., Bracquene, E., Diaz-Romero, D., Zaplana, I., Engelen, B., Duflou, J. R., Peeters, J. R. (2022).
Forecasting global aluminium flows to demonstrate the need for improved sorting and recycling methods. Waste Management, 137, 231–240. https://doi.org/10.1016/j.wasman.2021.11.019
86. Vasylieva, T., Pavlyk, V., Bilan, Y., Mentel, G., Rabe, M. (2021). Assessment of Energy Efficiency Gaps: The Case for Ukraine. Energies, 14 (5), 1323. https://doi.org/10.3390/en14051323
87. Wagiman, A., Mustapa, M.S., Asmawi, R., Shamsudin, S., Lajis, M. A., Mutoh, Y. (2020). A review on direct hot extrusion technique in recycling of aluminium chips. The International Journal of Advanced Manufacturing Technology, 106, 641–653. https://doi.org/10.1007/s00170-019-04629-7
88. Wang, M., Guo, Y., Wang, H., Zhao, S. (2022). Characterization of Refining the Morphology of Al–Fe–Si in A380 Aluminum Alloy due to Ca Addition. Processes, 10, 672. https://doi.org/10.3390/pr10040672
89. Wang, Xi Vi & Wang, W. (2018). Digital twin-based WEEE recycling, recovery and remanufacturing in the background of Industry 4.0. International Journal of Production Research, (Vol. 57, No. 12), 3892–3902. https://doi.org/10.1080/00207543.2018.1497819
90. Watari, T., Nansai, K., Nakajima, K. (2021). Major metals demand, supply, and environmental impacts to 2100: A critical review, Resources, Conservation and Recycling, 164. https://doi.org/10.1016/j.resconrec.2020.105107
91. Wei, H., Luo, K., Xing, J., Fan, J. (2022). Predicting co-pyrolysis of coal and biomass using machine learning approaches, Fuel, 310. https://doi.org/10.1016/j.fuel.2021.122248
92. Weritz, J., Dudek, M. (2022). Aluminum Roadmap to a Sustainable Future. In: Lazou, A., Daehn, K., Fleuriault, C., Gökelma, M., Olivetti, E., Meskers, C. (eds) REWAS 2022: Developing Tomorrow’s Technical Cycles (Volume I). The Minerals, Metals & Materials Series, 3–6. https://doi.org/10.1007/978-3-030-92563-5_1
93. Yamshynskyi, M. M., Selivorstov, V.Yu., Lukianenko, I. V., Kyvgylo, B.V. (2022). Vplyv modyfikuvannia vysokodyspersnym karbidom kremniiu na lyvarni vlastyvosti vtorynnoho splavu systemy Al-Si. [Influence of Modification with Highly Dispersed Silicon Carbide on the Casting Properties of the Secondary Alloy of the Al-Si System] Metall i litʹe Ukrainy, 30 (1), 77–83 (in Ukrainian). https://doi.org/10.15407/steelcast2022.01.077.
94. Yang, M., Cela, B. & Yang, F. (2020). Innovative energy policy to transform energy systems in Ukraine. Mitig Adapt Strateg Glob Change 25, 857–879. https://doi.org/10.1007/s11027-019-09898-x
95. Yu, J.M., Hashimoto, T., Li, H.T., Wanderka, N., Zhang, Z., Cai, C., Zhong, X. L., Qin, J., Dong, Q.P., Nagaumi, H., Wang, X.N. (2022). Formation of intermetallic phases in unrefined and refined AA6082 Al alloys investigated by using SEM-based ultramicrotomy tomography. Journal of Materials Science & Technology, 120, 118-128, https://doi.org/10.1016/j.jmst.2022.02.007
96. Yuzer, B., Aydin, I. M., Yildiz, H., Hasançebi, B., Selcuk, H., Kadmind, Y. (2022). Optimal performance of electrodialysis process for the recovery of acid wastes in wastewater: Practicing circular economy in aluminum finishing industry. Chemical Engineering Journal, 434. https://doi.org/10.1016/j.cej.2022.134755
97. Zalakeviciute, R., Mejia, D., Alvarez, H., Bermeo, X., Bonilla-Bedoya, S., Rybarczyk, Y., Lamb, B. (2022). War Impact on Air Quality in Ukraine. Sustainability, 14 (21). https://doi.org/10.3390/su142113832
98. Zhao, Yu., He, W., Song, D., Shen, F., Li, X., Sun, Z., Wang, Y., Liu, S., Du, Y., Fernández, R. (2022). Effect of ultrasonic melt processing and Al–Ti–B on the microstructural refinement of recycled Al alloys. Ultrasonics Sonochemistry, 89. https://doi.org/10.1016/j.ultsonch.2022.106139
99. Zhu, Y., Chappuis, L. B., Kleine, R. D., Kim, H. C., Wallington, T. J., Luckey, G., Cooper, D. R. (2021). The coming wave of aluminum sheet scrap from vehicle recycling in the United States. Resources, Conservation and Recycling, 164. https://doi.org/10.1016/j.resconrec.2020.105208.