MORPHOLOGICAL FEATURES OF THE STRUCTURE OF THE ORGANS OF THE FORECAST OF PIGS

Keywords: esophagus, pigs, digestive organs, foregut, stomach, mucous membrane

Abstract

Pigs are used in state, collective, private enterprises, farms to obtain meat, lard, skin from these animals and meet human requirements. The digestive organs of the foregut of pigs include the esophagus and stomach, which belong to organs of a tubular structure. The conducted studies of morphometry, the outline of the organs of the foregut of pigs in the article once again clearly defined these components. Emphasis was placed on specific anatomical species features of pigs in the structure of the esophagus and stomach. The esophagus of the pig begins with a narrowing from the pharynx at the level of the first rings of the trachea, passes dorsally along the trachea in the ventral part of the neck, forms an esophageal depression on the lungs in the chest cavity. Through the opening of the diaphragm, the esophagus enters the abdominal cavity, expands in the form of a watering can and passes into the stomach of the pig through the cardiac opening. A clear anatomical definition of the parts of the esophagus was determined, their topographical location in pigs of this breed, and the layered structure of this tubular organ was investigated. A peculiarity of the mucous membrane of the esophagus of pigs is its folds, which can be seen on the preparation, a well-defined submucosal layer. The stomach of pigs is an extension of the digestive tube in the form of an elongated oval, single-chambered, with two openings. The cardiac opening is the entrance to the esophagus, and the pyloric opening is the exit of the chyme and the beginning of the duodenum. From the outside, the distance from one hole to another is called the greater and lesser curvatures. In pigs, a diverticulum with a tip directed to the right and caudally is clearly distinguished on the cardiac part from the entrance of the esophagus to the stomach. On the side of the pyloric opening, the circular muscle fibers in pigs form a clamp around the pyloric opening, and along a larger curve, a thickening is formed in the form of a half-oval cushion, or a roller, which is located in the pyloric part around the corresponding opening. The inner lining of the stomach of pigs is a gray membrane, which has all four of its components: the epithelial plate, the main, muscular and submucous base. On the drug, the mucous membrane has a different appearance in color and configuration due to its enzymatic activity and the location of the glands and its composition. A white glandless area is clearly visible from the cardiac edge. The entire mucous membrane of pigs has folds, pits, furrows of various shapes, which are clearly anatomically located. The epithelial plate is formed by a singlelayered prismatic glandular epithelium. The cells of this epithelium produce mucus that protects the mucosa from chemical and mechanical damage by food and gastric juice itself. The main plate is a loose connective tissue where there are blood and lymphatic vessels, nerves and glands that produce gastric juice. The glands are located topographically along the glandular part of the stomach and have the appropriate name, cardiac, pyloric, bottom.

References

1. Abdalla, E. K., Vauthey, J. N., & Couinaud, C. (2002). The caudate lobe of the liver: implications of embryology and anatomy for surgery. Surgical oncology clinics of North America, 11(4), 835–848. https://doi.org/10.1016/s1055-3207(02)00035-2
2. Aaslyng, M. D., & Hviid, M. (2020). Meat quality in the Danish pig population anno 2018. Meat science, 163, 108034. https://doi.org/10.1016/j.meatsci.2019.108034
3. Anwanwan D, Singh SK, Singh S et al. (2020). Challenges in liver cancer and possible treatment approaches, BBA - Rev Cancer 1873(1):188314 DOI: 10.1016/j.bbcan.2019.188314
4. Bageacu, S., Abdelaal, A., Ficarelli, S., Elmeteini, M., & Boillot, O. (2011). Anatomy of the right liver lobe: a surgical analysis in 124 consecutive living donors. Clinical transplantation, 25(4), E447–E454. https://doi.org/10.1111/j.1399-0012.2011.01466.x
5. Claus von Trotha, K. T., Butz, N., Grommes, J., Binnebösel, M., Charalambakis, N., Mühlenbruch, G., Schumpelick, V., Klinge, U., Neumann, U. P., Prescher, A., & Krones, C. J. (2015). Vascular anatomy of the small intestine-a comparative anatomic study on humans and pigs. International journal of colorectal disease, 30(5), 683–690. https://doi.org/10.1007/s00384-015-2163-4
6. Cooper DKC, Dou KF, Tao KS, Yang ZX, Tector AJ, Exer B. (2016). Porcine liver xenotransplantation: a review of progress toward the clinic. Transplantation 100 (10): 2039–47. doi: 10.1097/TP.0000000000001319
7. Filipponi, F., Leoncini, G., Campatelli, A., Bagnolesi, A., Perri, G., Romagnoli, P., & Mosca, F. (1995). Segmental organization of the pig liver: anatomical basis of controlled partition for experimental grafting. European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes, 27(3), 151–157. https://doi.org/10.1159/000129394
8. Goldarasena N., Cullen J.M., Kim D.S., Exer B., Khalazun K. (2020). Expansion of the pool of donors for liver transplantation at the expense of marginal donors. Int J Surg 82S: 30–5. doi: 10.1016/j.ijsu.2020.05.024
9. Iwata, H., Sajiki, T., Maeda, H., Park, Y. G., Zhu, B., Satoh, S., Uesugi, T., Ikai, I., Yamaoka, Y., & Ikada, Y. (1999). In vitro evaluation of metabolic functions of a bioartificial liver. ASAIO journal (American Society for Artificial Internal Organs : 1992), 45(4), 299–306. https://doi.org/10.1097/00002480-199907000-00009
10. Hoang TX, Kim JY. Regulatory macrophages in solid organ xenotransplantation. Korean J Transplant. 2023 Dec 20. doi: 10.4285/kjt.23.0055. Epub ahead of print. PMID: 38115165.
11. Jing Yang., Liuqing Yang., Shanhong MA., Deming Zhao and Tao Qin. (2021). Numerical coupling analysis of the influence of blood flow on the mechanical response for liver. Journal of Mechanics in Medicine and Biology V. 21, No. 3 2150018 (12 pages) DOI: 10.1142/S0219519421500184
12. Kornblith, P. L., Boley, S. J., & Whitehouse, B. S. (1992). Anatomy of the splanchnic circulation. The Surgical clinics of North America, 72(1), 1–30. https://doi.org/10.1016/s0039-6109(16)45625-2
13. Lada Eberlova., Vaclav Liska, Hynek Mirka, Zbynek Tonar., Stanislav Haviar., Milos Svoboda., Jan Benes., Richard Palek., Michal Emingr., Jachym Rosendorf., Patrik Mik., Sarah Leupen., Alois Lametschwandtner. (2017) .The use of porcine corrosion casts for teaching human anatomy. Journal of surgical research. v. 213, рр. 69-77 https://doi.org/10.1016
14. Lada, E., Anna, M., Patrik, M., Zbynek, T., Miroslav, J., Hynek, M., Richard, P., Sarah, L., & Vaclav, L. (2020). Porcine Liver Anatomy Applied to Biomedicine. The Journal of surgical research, 250, 70–79. https://doi.org/10.1016/j.jss.2019.12.
15. Lauronen, J., Pakarinen, M. P., Kuusanmäki, P., Halttunen, J., & Paavonen, T. (2001). Autotransplantation modulates ileal enteroendocrine cell expression in the pig. The Journal of surgical research, 95(2), 174–180. https://doi.org/10.1006/jsre.2000.6032
16. Leal, A. J., Tannuri, A. C., Belon, A. R., Guimarães, R. R., Coelho, M. C., Oliveira Gonçalves, J.d, Sokol, S. S., De Melo, E. S., Otoch, J. P., & Tannuri, U. (2013). A simplified experimental model of large-for-size liver transplantation in pigs. Clinics (Sao Paulo, Brazil), 68(8), 1152–1156. https://doi.org/10.6061/clinics/2013(08)15
17. Majlesara, A., Krause, J., Khajeh, E., Ghamarnejad, O., Gharabaghi, N., Tinoush, P., Mohammadi, S., Al-Saeedi, M., Mehrabi, A., & Golriz, M. (2021). A fast and easy-to-learn technique for liver resection in a porcine model. The Journal of international medical research, 49(2), 300060521990219. https://doi.org/10.1177/0300060521990219
18. Mik, P., Tonar, Z., Malečková, A., Eberlová, L., Liška, V., Pálek, R., Rosendorf, J., Jiřík, M., Mírka, H., Králíčková, M., & Witter, K. (2018). Distribution of Connective Tissue in the Male and Female Porcine Liver: Histological Mapping and Recommendations for Sampling. Journal of comparative pathology, 162, 1–13. https://doi.org/10.1016/j.jcpa.2018.05.004
19. Nikolic, D., Djinovic-Stojanovic, J., Jankovic, S., Stanisic, N., Radovic, C., Pezo, L., & Lausevic, M. (2017). Mineral composition and toxic element levels of muscle, liver and kidney of intensive (Swedish Landrace) and extensive (Mangulica) pigs from Serbia. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment, 34(6), 962–971. https://doi.org/10.1080/19440049.2017.1310397
20. Nowak, E., Kuchinka, J., Szczurkowski, A. and Kuder, T. (2015), Extrahepatic Biliary Tract in Chinchilla (Chinchilla laniger, Molina). Anat. Histol. Embryol., 44: 236–240.
21. Nykonenko A., Varvra P., Zonca P., (2017), Anatomic Particularities of Human and Pig Liver. Experimental and Clinical Transplantation, 15(1):21-26.
22. Redlich, J., Souffrant, W. B., Laplace, J. P., Hennig, U., Berg, R., & Mouwen, J. M. (1997). Morphometry of the small intestine in pigs with ileo-rectal anastomosis. Canadian journal of veterinary research = Revue canadienne de recherche veterinaire, 61(1), 21–27.
23. Sanchez-Quevedo М.С., Alaminos M., Capitan L.M. (2007). Histological and histochemical evaluation of human oral mucosa constructs developed by tissue engineering. Histol. Histopathol. V. 22, 631-640.
24. Sajiki, T., Iwata, H., Paek, H. J., Tosha, T., Fujita, S., Ueda, Y., Park, Y. G., Zhu, B., Satoh, S., Ikai, I., Yamaoka, Y., & Ikada, Y. (2000). Morphologic studies of hepatocytes entrapped in hollow fibers of a bioartificial liver. ASAIO journal (American Society for Artificial Internal Organs : 1992), 46(1), 49–55. https://doi.org/10.1097/00002480-200001000-00014
25. Stamatova-Yovcheva, K., Dimitrov, R., Yonkova, P., Russenov, A., Yovchev, D., & Kostov, D. 2012. Comparative imaging anatomic study of domestic rabbit liver (Oryctolagus cuniculus). Trakia Journal of Sciences 10:57-63.
26. Stan, F. (2014). Anatomical Differences and similarities of liver and hepatic ligaments in rabbits and guinea pigs. Anatomia, Histologia, Embryologia, 43: Issue Supplement s1 (p.89).
27. Stan, F. (2014). Topographical anatomy of guinea pigs kidneys. Lucrãri tiinþifice Medicinã Veterinarã Timioara, Vol. XlVII(1), 114-123.
28. Sykes M, Sachs DH. Transplanting organs from pigs to humans. Sci Immunol. 2019 Nov 1;4(41):eaau6298. doi: 10.1126/sciimmunol.aau6298. PMID: 31676497; PMCID: PMC7293579.
29. Skandalakis J.E., Skandalakis L.J., Skandalakis PN, Mirilas P., (2004), Hepatic surgical anatomy. Surg Clin North Am, 84(2):413-435
30. Tautenhan H.M., Rauchfus F., Dyb A.A., Bauschke A., Settmacher U. (2020). Liver transplantation associated with life. A surgeon 91 (11): 926–33. doi: 10.1007/s00104-020-01268-7
31. Vishy Mahadevan. (2020). Anatomy of the liver. Surgery (Oxford), V. 38 (8), pp. 427-431
32. Vodicka, P., Smetana, K., Jr, Dvoránková, B., Emerick, T., Xu, Y. Z., Ourednik, J., Ourednik, V., & Motlík, J. (2005). The miniature pig as an animal model in biomedical research. Annals of the New York Academy of Sciences, 1049, 161–171. https://doi.org/10.1196/annals.1334.015
33. Xiao J, Wang F, Wong NK, He JH, Zhang R, Sun RJ. р(2019). The global burden of liver disease and research trends: an analysis from the perspective of China. J. Hepatol 71 (1): 212–21. doi: 10.1016
34. Zanchet D.J., Montero E.F.S., (2002), Pig liver sectorization and segmentation and virtual reality depiction. Acta Cir Bras [serial online], 17(6):381-387.
Published
2024-10-02
How to Cite
Plyuta, L. V. (2024). MORPHOLOGICAL FEATURES OF THE STRUCTURE OF THE ORGANS OF THE FORECAST OF PIGS. Bulletin of Sumy National Agrarian University. The Series: Veterinary Medicine, (2(65), 30-34. https://doi.org/10.32782/bsnau.vet.2024.2.5