Keywords: Bacillus subtilis, piglets, live weight gain, erythrocyte adhesion, piglet metabolism


Intensive rearing of pigs leads to deterioration of sanitary and hygienic conditions. In addition, industrial stress reduces the resistance of animals. Breakthrough of immunity is reflected in an increase in cases of infectious diseases among young animals. To prevent the unjustified use of antibiotics and improve the immune response in piglets, tests of probiotic strains of Bacillus subtilis were conducted in the pig farm «Institute of Agriculture of the Northeast» NAAS of Ukraine from October to November 2021. The object of research were piglets (up to 30 days) on the rearing of Landrace + Big breed. Probiotic strains of bacteria of the genera Bacillus subtilis Wogene, Bacillus subtilis Hanzhou VEGA, Bacillus subtilis Hansen and Bacillus subtilis Challenge were given to piglets at the rate of 0.3 kg per ton of water. Content of bacteria of the genus Bacillus subtilis CFU / g: 4 – 4,5 × 109 CFU in 1 g. Conditions of keeping and fattening in the control and experimental groups were the same. The adhesive properties of Bacillus subtilis were studied by the method of VI Brillis. For biochemical analysis, blood was obtained from the jugular vein. The content of total protein and its fractions was determined using an automatic biochemical analyzer using appropriate diagnostic systems. Studies have shown that the highest average daily gain was observed in the group of piglets fed B. subtilis Chellenge. The difference between the control and study groups was 2,08 %. Metabolic parameters in piglets in the group with B. subtilis Chellenge had a higher level of lysozyme by 14,7 %; γ-globulin - by 6,9 % and albumin - by 2,9 %, compared with the control group of animals. The strain of B. subtilis Challenge IAM 4,86 ± 0,24 also had the highest adhesion rates. The results of the research established the most effective strain of bacteria for use in this pig farm Bacillus subtilis Challenge, which can be used for piglets as an alternative to antibiotics. It was also found that the use of Bacillus subtilis in the diet of experimental animals improves protein metabolism in the body. The prospect of further research in this direction is to determine the mechanism of action of Bacillus subtilis probiotics on isolates of pathogenic microorganisms and to determine the therapeutic effect in pigs.


1. Ashida, H., Ogawa, M., Kim, M., Mimuro, H., & Sasakawa, C. (2011). Bacteria and host interactions in the gut epithelial barrier. Nature chemical biology, 8(1), 36–45. https://doi.org/10.1038/nchembio.741
2. Braegger, C., Chmielewska, A., Decsi, T., Kolacek, S., Mihatsch, W., Moreno, L., Pieścik, M., Puntis, J., Shamir, R., Szajewska, H., Turck, D., van Goudoever, J., & ESPGHAN Committee on Nutrition (2011). Supplementation of infant formula with probiotics and/or prebiotics: a systematic review and comment by the ESPGHAN committee on nutrition. Journal of pediatric gastroenterology and nutrition, 52(2), 238–250. https://doi.org/10.1097/MPG.0b013e3181fb9e80
3. Cutting S. M. (2011). Bacillus probiotics. Food microbiology, 28(2), 214–220. https://doi.org/10.1016/j.fm.2010.03.007
4. Fabiano, V., Indrio, F., Verduci, E., Calcaterra, V., Pop, T. L., Mari, A., Zuccotti, G. V., Cullu Cokugras, F., Pettoello-Mantovani, M., & Goulet, O. (2021). Term Infant Formulas Influencing Gut Microbiota: An Overview. Nutrients, 13(12), 4200. https://doi.org/10.3390/nu13124200
5. Ford, A. C., Harris, L. A., Lacy, B. E., Quigley, E., & Moayyedi, P. (2018). Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Alimentary pharmacology & therapeutics, 48(10), 1044–1060. https://doi.org/10.1111/apt.15001
6. Ford, A. C., Quigley, E. M., Lacy, B. E., Lembo, A. J., Saito, Y. A., Schiller, L. R., Soffer, E. E., Spiegel, B. M., & Moayyedi, P. (2014). Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. The American journal of gastroenterology, 109(10), 1547–1562. https://doi.org/10.1038/ajg.2014.202
7. Guo, M., Hao, G., Wang, B., Li, N., Li, R., Wei, L., & Chai, T. (2016). Dietary Administration of Bacillus subtilis Enhances Growth Performance, Immune Response and Disease Resistance in Cherry Valley Ducks. Frontiers in microbiology, 7, 1975. https://doi.org/10.3389/fmicb.2016.01975
8. He, Y., Mao, C., Wen, H., Chen, Z., Lai, T., Li, L., Lu, W., & Wu, H. (2017). Influence of ad Libitum Feeding of Piglets With Bacillus Subtilis Fermented Liquid Feed on Gut Flora, Luminal Contents and Health. Scientific reports, 7, 44553. https://doi.org/10.1038/srep44553
9. Hu, Y., Dun, Y., Li, S., Zhao, S., Peng, N., & Liang, Y. (2014). Effects of Bacillus subtilis KN-42 on Growth Performance, Diarrhea and Faecal Bacterial Flora of Weaned Piglets. Asian-Australasian journal of animal sciences, 27(8), 1131–1140.
https://doi.org/10.5713/ajas.2013.13737; Yue, S., Li, Z., Hu, F., & Picimbon, J. F. (2020). Curing piglets from diarrhea and preparation of a healthy microbiome with Bacillus treatment for industrial animal breeding. Scientific reports, 10(1), 19476. https://doi.org/10.1038/s41598-020-75207-1
10. Isaacson, R., & Kim, H. B. (2012). The intestinal microbiome of the pig. Animal health research reviews, 13(1), 100–109. https://doi.org/10.1017/S1466252312000084
11. Islam, K. S., Shiraj-Um-Mahmuda, S., & Hazzaz-Bin-Kabir, M. (2016). Antibiotic usage patterns in selected broiler farms of Bangladesh and their public health implications. Journal of Public Health in Developing Countries, 2(3), 276-284 https://www.jphdc.org/index.php/jphdc/article/view/84
12. Jeżewska-Frąckowiak, J., Seroczyńska, K., Banaszczyk, J., Jedrzejczak, G., Żylicz-Stachula, A., & Skowron, P. M. (2018). The promises and risks of probiotic Bacillus species. Acta biochimica Polonica, 65(4), 509–519. https://doi.org/10.18388/abp.2018_2652
13. Kalil A. C., & Schooneveld, T. C. (2014). Probiotics and antibiotic-associated diarrhoea. Lancet (London, England), 383(9911), 29–30. https://doi.org/10.1016/S0140-6736(13)62734-8
14. Kim, H. B., Borewicz, K., White, B. A., Singer, R. S., Sreevatsan, S., Tu, Z. J., & Isaacson, R. E. (2012). Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proceedings of the National Academy of Sciences of the United States of America, 109(38), 15485–15490. https://doi.org/10.1073/pnas.1205147109)
15. Kobyliak, N., Conte, C., Cammarota, G., Haley, A. P., Styriak, I., Gaspar, L., Fusek, J., Rodrigo, L., & Kruzliak, P. (2016). Probiotics in prevention and treatment of obesity: a critical view. Nutrition & metabolism, 13, 14. https://doi.org/10.1186/s12986-016-0067-0
16. Kukkonen, K., Savilahti, E., Haahtela, T., Juntunen-Backman, K., Korpela, R., Poussa, T., Tuure, T., & Kuitunen, M. (2007). Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, doubleblind, placebo-controlled trial. The Journal of allergy and clinical immunology, 119(1), 192–198. https://doi.org/10.1016/j.jaci.2006.09.009
17. Larsen, N., Thorsen, L., Kpikpi, E. N., Stuer-Lauridsen, B., Cantor, M. D., Nielsen, B., Brockmann, E., Derkx, P. M., & Jespersen, L. (2014). Characterization of Bacillus spp. strains for use as probiotic additives in pig feed. Applied microbiology and biotechnology, 98(3), 1105–1118. https://doi.org/10.1007/s00253-013-5343-6
18. Li, X. Q., Zhu, Y. H., Zhang, H. F., Yue, Y., Cai, Z. X., Lu, Q. P., Zhang, L., Weng, X. G., Zhang, F. J., Zhou, D., Yang, J. C., & Wang, J. F. (2012). Risks associated with high-dose Lactobacillus rhamnosus in an Escherichia coli model of piglet diarrhoea: intestinal microbiota and immune imbalances. PloS one, 7(7), e40666. https://doi.org/10.1371/journal.pone.0040666
19. Markowiak, P., & Śliżewska, K. (2017). Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients, 9(9), 1021. https://doi.org/10.3390/nu9091021
20. Mazkour, S., Shekarforoush, S. S., Basiri, S., Nazifi, S., Yektaseresht, A., & Honarmand, M. (2020). Effects of two probiotic spores of Bacillus species on hematological, biochemical, and inflammatory parameters in Salmonella Typhimurium infected rats. Scientific reports, 10(1), 8035. https://doi.org/10.1038/s41598-020-64559-3
21. Menegat, M. B., DeRouchey, J. M., Woodworth, J. C., Dritz, S. S., Tokach, M. D., & Goodband, R. D. (2019). Effects of Bacillus subtilis C-3102 on sow and progeny performance, fecal consistency, and fecal microbes during gestation, lactation, and nursery periods1,2. Journal of animal science, 97(9), 3920–3937. https://doi.org/10.1093/jas/skz236
22. Mingmongkolchai, S., & Panbangred, W. (2018). Bacillus probiotics: an alternative to antibiotics for livestock production. Journal of applied microbiology, 124(6), 1334–1346. https://doi.org/10.1111/jam.13690
23. Niu, Q., Li, P., Hao, S., Zhang, Y., Kim, S. W., Li, H., Ma, X., Gao, S., He, L., Wu, W., Huang, X., Hua, J., Zhou, B., & Huang, R. (2015). Dynamic distribution of the gut microbiota and the relationship with apparent crude fiber digestibility and growth stages in pigs. Scientific reports, 5, 9938. https://doi.org/10.1038/srep09938
24. Ritchie, M. L., & Romanuk, T. N. (2012). A meta-analysis of probiotic efficacy for gastrointestinal diseases. PloS one, 7(4), e34938. https://doi.org/10.1371/journal.pone.0034938
25. Rybachuk, Z., Shkromada, O., Predko, A., & Dudchenko, Y. (2020). Influence of probiotics “Immunobacterin-D” on biocenoses and development of the gastrointestinal tract of calves. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(98), 22-27. https://doi.org/10.32718/nvlvet9804
26. Santillo, A., Annicchiarico, G., Caroprese, M., Marino, R., Sevi, A., & Albenzio, M. (2012). Probiotics in milk replacer influence lamb immune function and meat quality. Animal : an international journal of animal bioscience, 6(2), 339–345. https://doi.org/10.1017/S1751731111001571
27. Tanih, N. F., Sekwadi, E., Ndip, R. N., & Bessong, P. O. (2015). Detection of pathogenic Escherichia coli and Staphylococcus aureus from cattle and pigs slaughtered in abattoirs in Vhembe District, South Africa. TheScientificWorldJournal, 2015, 195972. https://doi.org/10.1155/2015/195972
28. Tian, Z., Wang, X., Duan, Y., Zhao, Y., Zhang, W., Azad, M., Wang, Z., Blachier, F., & Kong, X. (2021). Dietary Supplementation With Bacillus subtilis Promotes Growth and Gut Health of Weaned Piglets. Frontiers in veterinary science, 7, 600772. https://doi.org/10.3389/fvets.2020.600772
29. Yue, S., Li, Z., Hu, F., & Picimbon, J. F. (2020). Curing piglets from diarrhea and preparation of a healthy microbiome with Bacillus treatment for industrial animal breeding. Scientific reports, 10(1), 19476. https://doi.org/10.1038/s41598-020-75207-1
30. Yeo, S., Lee, S., Park, H., Shin, H., Holzapfel, W., & Huh, C. S. (2016). Development of putative probiotics as feed additives: validation in a porcine-specific gastrointestinal tract model. Applied microbiology and biotechnology, 100(23), 10043–10054. https://doi.org/10.1007/s00253-016-7812-1
31. Hartung, T. (2010). Comparative analysis of the revised Directive 2010/63/EU for the protection of laboratory animals with its predecessor 86/609/EEC – a t4 report. ALTEX, 27(4), 285-303. doi: 10.14573/altex.2010.4.285
How to Cite
Shkromada, O. I., Fotina, T. I., Fotina, H. A., Nechyporenko, O. L., Petrov, R. V., & Fotin, A. I. (2022). EFFECT OF BACILLUS SUBTILIS ON PIGS ON WEANING. Bulletin of Sumy National Agrarian University. The Series: Veterinary Medicine, (1 (56), 51-57. https://doi.org/10.32845/bsnau.vet.2022.1.8