EPIDEMIOLOGICAL CHARACTERISTICS OF STREPTOCOCCUS SUIS INFECTION
Abstract
Streptococcal infections have a significant impact on pig farming worldwide, including in Ukraine, resulting in significant economic losses for livestock farmers. Streptococcus is considered one of the primary zoonotic diseases in pigs, often causing meningitis, septicemia, or arthritis, and can also be dangerous for humans. For many years, experts have managed to control the spread of this infection quite effectively. However, in recent years, due to antibiotic resistance, this infection is becoming more widespread. Given the importance and danger of this pathogen for pigs, this problem is still relevant in pig farming. The main etiological factor of streptococcal infections in pigs is Streptococcus suis (S. suis), which are gram-positive bacteria that are either aerobic or facultatively anaerobic. Most streptococci have capsules, do not form spores, and cannot move. The structure of the streptococcal antigen is complex and consists of three primary components, namely groupspecific antigen, type-specific antigen, and nuclear protein antigen. β-type hemolytic streptococcus has highly pathogenic properties, and there are 35 serotypes based on different characteristics of the capsular antigen. S. suis serotype 2 is commonly isolated from clinically ill piglets and is considered the most virulent subtype of the organism. The pathogenicity of this bacterium for animals is related to its primary pathogenic factors, including the capsule, toxin, and enzymes. S. suis is widespread, and newborn piglets, suckling piglets, and pregnant sows are most susceptible to infection, while adult pigs are more resistant. S. suis tends to peak during weaning and mating, and piglet susceptibility to S. suis decreases with age. S. suis occasionally infects dogs, cats, rodents, cattle, sheep, and horses. It can also infect humans and has become a serious endemic threat to public health. The primary modes of transmission are alimentary and respiratory infections. People typically become infected by contacting sick animals. Infected animals often show symptoms such as pneumonia, wet dermatitis, meningitis, peritonitis, osteomyelitis, arthritis, and pharyngitis, among others. Outbreaks of the disease caused by S. suis usually occur throughout the year without any significant seasonal patterns.
References
2. Chang, P., Li, W., Shi, G., Li, H., Yang, X., Xia, Z., & Bei, W. (2018). The VraSR regulatory system contributes to virulence in Streptococcus suis via resistance to innate immune defenses. Virulence, 9(1), 771-782.
3. Collin, M., & Ehlers, M. (2013). The carbohydrate switch between pathogenic and immunosuppressive antigenspecific antibodies. Experimental dermatology, 22(8), 511-514.
4. Dai, J., Lai, L., Tang, H., Wang, W., Wang, S., Lu, C., & Wu, Z. (2018). Streptococcus suis synthesizes deoxyadenosine and adenosine by 5’-nucleotidase to dampen host immune responses. Virulence, 9(1), 1509-1520.
5. Deng, S., Xu, T., Fang, Q., Yu, L., Zhu, J., Chen, L., & Zhou, R. (2018). The surface-exposed protein SntA contributes to complement evasion in zoonotic Streptococcus suis. Frontiers in Immunology, 9, 1063.
6. Feng, Y., Zhang, H., Wu, Z., Wang, S., Cao, M., Hu, D., & Wang, C. (2014). Streptococcus suis infection: an emerging/reemerging challenge of bacterial infectious diseases? Virulence, 5(4), 477-497.
7. Gottschalk, M., Segura, M., & Xu, J. (2007). Streptococcus suis infections in humans: the Chinese experience and the situation in North America. Animal health research reviews, 8(1), 29-45.
8. Guo, G., Du, D., Yu, Y., Zhang, Y., Qian, Y., & Zhang, W. (2021). Pan‐genome analysis of Streptococcus suis serotype 2 revealed genomic diversity among strains of different virulence. Transboundary and Emerging Diseases, 68(2), 637-647.
9. Hlebowicz, M., Jakubowski, P., & Smiatacz, T. (2019). Streptococcus suis meningitis: epidemiology, clinical presentation and treatment. Vector-Borne and Zoonotic Diseases, 19(8), 557-562.
10. Hughes, J. M., Wilson, M. E., Wertheim, H. F., Nghia, H. D. T., Taylor, W., & Schultsz, C. (2009). Streptococcus suis: an emerging human pathogen. Clinical infectious diseases, 48(5), 617-625.
11. Jiang, X., Yang, Y., Zhou, J., Zhu, L., Gu, Y., Zhang, X., & Fang, W. (2016). Roles of the putative type IV-like secretion system key component VirD4 and PrsA in pathogenesis of Streptococcus suis type 2. Frontiers in cellular and infection microbiology, 6, 172.
12. LeBel, G., Vaillancourt, K., Yi, L., Gottschalk, M., & Grenier, D. (2018). Dipeptidylpeptidase IV of Streptococcus suis degrades the porcine antimicrobial peptide PR-39 and neutralizes its biological properties. Microbial pathogenesis, 122, 200-206.
13. Li, Q., Fu, Y., Ma, C., He, Y., Yu, Y., Du, D., Zhang, W. (2017). The non-conserved region of MRP is involved in the virulence of Streptococcus suis serotype 2. Virulence, 8(7), 1274-1289.
14. Li, Q., Ma, C., Fu, Y., He, Y., Yu, Y., Du, D., . . . Zhang, W. (2017). Factor H specifically capture novel Factor H-binding proteins of Streptococcus suis and contribute to the virulence of the bacteria. Microbiological research, 196, 17-25.
15. Li, T., & Yu, X. (2019). Isolation and identification of Streptococcus suis. Swine Production(3), 116-118.
16. Liu, M., Xia, X., Liu, X., & Kasianenko, O. (2021). Research Progress on the pathogenic mechanism of Streptococcus suis 2. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 23(104), 30-35.
17. Liu, W., Tan, M., Zhang, C., Xu, Z., Li, L., & Zhou, R. (2018). Functional characterization of murB-potABCD operon for polyamine uptake and peptidoglycan synthesis in Streptococcus suis. Microbiological research, 207, 177-187.
18. Lv, Q., Hao, H., Bi, L., Zheng, Y., Zhou, X., & Jiang, Y. (2014). Suilysin remodels the cytoskeletons of human brain microvascular endothelial cells by activating RhoA and Rac1 GTPase. Protein & cell, 5(4), 261-264.
19. Musyoki, A. M., Shi, Z., Xuan, C., Lu, G., Qi, J., Gao, F., . . . Haywood, J. (2016). Structural and functional analysis of an anchorless fibronectin-binding protein FBPS from Gram-positive bacterium Streptococcus suis. Proceedings of the National Academy of Sciences, 113(48), 13869-13874.
20. Norton, P. M., Rolph, C., Ward, P. N., Bentley, R. W., & Leigh, J. A. (1999). Epithelial invasion and cell lysis by virulent strains of Streptococcus suis is enhanced by the presence of suilysin. FEMS Immunology & Medical Microbiology, 26(1), 25-35.
21. Okwumabua, O., Williamson, C. H., Pearson, T. R., & Sahl, J. W. (2020). Draft Genome Sequence of a Streptococcus suis Isolate from a Case of Cattle Meningitis. Microbiology Resource Announcements, 9(19), e00153-00120.
22. Pian, Y., Gan, S., Wang, S., Guo, J., Wang, P., Zheng, Y., & Yuan, Y. (2012). Fhb, a novel factor H-binding surface protein, contributes to the antiphagocytic ability and virulence of Streptococcus suis. Infection and immunity, 80(7), 2402-2413.
23. Qian, Y., Zhang, Y., Yu, Y., Li, Q., Guo, G., Fu, Y., . . . Zhang, W. (2018). SBP1 is an adhesion-associated factor without the involvement of virulence in Streptococcus suis serotype 2. Microbial pathogenesis, 122, 90-97.
24. Roy, D., Takamatsu, D., Okura, M., Goyette-Desjardins, G., Van Calsteren, M.-R., Dumesnil, A., & Segura, M. (2018). Capsular sialyltransferase specificity mediates different phenotypes in Streptococcus suis and Group B Streptococcus. Frontiers in microbiology, 9, 545.
25. Segura, M., Calzas, C., Grenier, D., & Gottschalk, M. (2016). Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS letters, 590(21), 3772-3799.
26. Shi, J., Hu, D., Zhu, J., Zhang, X., Hou, T., Guo, J., & Wang, C. (2012). Capsular saliva acid of Streptococcus suis 2 influences virulence and host inflammatory responses. Wei Sheng wu xue bao= Acta Microbiologica Sinica, 52(4), 498-504.
27. Timoney, J. F. (2022). Streptococcus. Pathogenesis of bacterial infections in animals, 565-587.
28. Vadeboncoeur, N., Segura, M., Al-Numani, D., Vanier, G., & Gottschalk, M. (2003). Pro-inflammatory cytokine and chemokine release by human brain microvascular endothelial cells stimulated by Streptococcus suis serotype 2. FEMS Immunology & Medical Microbiology, 35(1), 49-58.
29. Vötsch, D., Willenborg, M., Oelemann, W. M., Brogden, G., & Valentin-Weigand, P. (2019). Membrane binding, cellular cholesterol content and resealing capacity contribute to epithelial cell damage induced by suilysin of Streptococcus suis. Pathogens, 9(1), 33.
30. Wang, J., Feng, Y., Wang, C., Zheng, F., Hassan, B., Zhi, L., . . . Jiang, S. (2017). Genome-wide analysis of a avirulent and reveal the strain induces pro-tective immunity against challenge with virulent Streptococcus suis Serotype 2. BMC microbiology, 17, 1-14.
31. Wang, S., Ma, M., Liang, Z., Zhu, X., Yao, H., Wang, L., & Wu, Z. (2022). Pathogenic investigations of Streptococcus pasteurianus, an underreported zoonotic pathogen, isolated from a diseased piglet with meningitis. Transboundary and Emerging Diseases, 69(5), 2609-2620.
32. Wang, Y., Gagnon, C. A., Savard, C., Music, N., Srednik, M., Segura, M., . . . Gottschalk, M. (2013). Capsular sialic acid of Streptococcus suis serotype 2 binds to swine influenza virus and enhances bacterial interactions with virus-infected tracheal epithelial cells. Infection and immunity, 81(12), 4498-4508.
33. Xia, X., Qin, W., Zhu, H., Wang, X., Jiang, J., & Hu, J. (2019). How Streptococcus suis serotype 2 attempts to avoid attack by host immune defenses. Journal of Microbiology, Immunology and Infection, 52(4), 516-525.
34. Yin, S., Daum, R. S., & Boyle-Vavra, S. (2006). VraSR two-component regulatory system and its role in induction of pbp2 and vraSR expression by cell wall antimicrobials in Staphylococcus aureus. Antimicrobial agents and chemotherapy, 50(1), 336-343.
35. Yu, Y., Qian, Y., Du, D., Xu, C., Dai, C., Li, Q., & Zhang, W. (2016). SBP2 plays an important role in the virulence changes of different artificial mutants of Streptococcus suis. Molecular bioSystems, 12(6), 1948-1962.
36. Zhang, C., Sun, W., Tan, M., Dong, M., Liu, W., Gao, T., & Zhou, R. (2017). The eukaryote-like serine/threonine kinase STK regulates the growth and metabolism of zoonotic Streptococcus suis. Frontiers in cellular and infection microbiology, 7, 66.
37. Zhang, S., Wang, J., Chen, S., Yin, J., Pan, Z., Liu, K., . . . Jiang, Y. (2016). Effects of suilysin on Streptococcus suis-induced platelet aggregation. Frontiers in cellular and infection microbiology, 6, 128.
38. Zhang, Y., Lu, P., Pan, Z., Zhu, Y., Ma, J., Zhong, X., . . . Yao, H. (2018). SssP1, a Streptococcus suis fimbria-like protein transported by the SecY2/A2 system, contributes to bacterial virulence. Applied and Environmental Microbiology, 84(18), e01385-01318.
39. Zhao, J., Pan, S., Lin, L., Fu, L., Yang, C., Xu, Z., . . . Zhang, A. (2015). Streptococcus suis serotype 2 strains can induce the formation of neutrophil extracellular traps and evade trapping. FEMS Microbiology Letters, 362(6).
40. Zhao, Y., Liu, G., Li, S., Wang, M., Song, J., Wang, J., . . . Hu, F. (2011). Role of a type IV–like secretion system of Streptococcus suis 2 in the development of streptococcal toxic shock syndrome. Journal of Infectious Diseases, 204(2), 274-281.
41. Zheng, C., Ren, S., Xu, J., Zhao, X., Shi, G., Wu, J., & Bei, W. (2017). Contribution of NADH oxidase to oxidative stress tolerance and virulence of Streptococcus suis serotype 2. Virulence, 8(1), 53-65.
42. Zheng, F., Shao, Z.-Q., Hao, X., Wu, Q., Li, C., Hou, H., & Pan, X. (2018). Identification of oligopeptide-binding protein (OppA) and its role in the virulence of Streptococcus suis serotype 2. Microbial pathogenesis, 118, 322-329.