DEVELOPMENT OF THE PRINCIPLES OF PREVENTION OF BACTERIAL POULTRY DISEASES USING ALTERNATIVE METHODS
Abstract
The issue of providing the population with ecologically safe poultry products, without the presence of residual amounts of antibacterial drugs in them, which can lead to the emergence of antibiotic resistance in consumers, is relevant today. The development of a complex of measures on poultry farms without the use of antibacterial drugs is a promising direction of development in terms of the concept of "One Health". The purpose of the study was to argue the principles of prevention of bacterial diseases of poultry using alternative means. Experimental research was conducted during 2021-22 at the Department of Virology, Pathanatomy and Poultry Diseases, as well as at the Department of Veterinary Expertise, Microbiology, Zoohygiene and Safety and Quality of Livestock Products of the Sumy National Agrarian University and in poultry farms of the Sumy Region. When conducting epizootological studies in poultry farms, two syndromes were found, namely respiratory and intestinal, accompanying the course of diseases in poultry. Microflora isolated from poultry during the course of infectious diseases of poultry with respiratory syndrome was presented: E. coli; K. pneumoniae; P. multocida; A. fumigatus; M. gallisepticum; P. vulgaris; S. aureus, Cl. perfringens; P. aeruginosa; P. mirabilis; S. enteritidis. The following cultures were isolated for intestinal syndrome: S. enteritidis; E. coli; C. jejuni; S. pullorum-gallinarum; E. agglomerans; S. faecalis; C. fetus; S. aureus; Y. enterocolitica; P. aeruginosa; P. mirabilis; P. vulgaris. Pathogens C. jejuni, P. vulgaris, E. coli, P. aeruginosa, S. enteritidis, P. mirabilis, S. aureus were isolated in respiratory and intestinal syndrome. In order to prevent bacterial diseases of poultry, it is necessary to control them according to a scheme that includes: regular diagnostic monitoring (serological and microbiological studies); bacterial control of breeding and rearing of poultry; control of the production cycle, immunoprophylaxis, use of probiotic therapy, disinfection, regular deratization, timely specific prevention. Important attention should be paid to the retrospective analysis of the isolated microflora with the mandatory determination of the sensitivity of the isolated microorganisms to antibacterial drugs. For the stable operation of poultry farming, it is important to develop and implement critical control points of threat analysis (HACCP) at all stages of production of poultry products. The first critical point is the control of microbiological indicators of feed; the second point is responsible for control at technological facilities; the third point is responsible for control at the output stage.
References
2. Aarestrup, F.M., Wegener, H.C., Collignon, P. (2008). Resistance in bacteria of the food chain: epidemiology and control strategies. Expert Rev Anti Infect Ther. 6(5). 733–750.
3. Aarestrup, F.M. (2005). Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic Clin Pharmacol Toxicol. 96(4). 271–281.
4. Aguidissou, O.N, Boko, K.C, Sessou, P, Yovo, M, Komagbe, S.G, Ayihou, Y, Alitonou, G.A, Avlessi, F, Farougou, S, Sohounhloue, K.C.D. (2019). Antibacterial activity of essential oil of Aeollanthus pubescens on multidrug-resistant strains of Salmonella and Escherichia coli isolated from laying hens farming in Benin. Adv. Microbiol. 9. 804–823.
5. Antimicrobial resistance. World Health Organization (WHO). https://www.who.int/health-topics/antimicrobialresistance 6. Antimicrobial Resistance. Сodex alimentarius FAO-WHO. Home | Food and Agriculture Organization of the United Nations. https://www.fao.org/fao-who-codexalimentarius/thematic-areas/antimicrobial-resistance/en
7. Bacanlı, M., Başaran, N. (2019). Importance of antibiotic residues in animal food. Food Chem Toxicol. 125. 462–466.
8. Beshiru, A., Igbinosa, I.H, Igbinosa, E.O. (2016). An investigation on antibiogram characteristics of Escherichia coli isolated from piggery farms in Benin City, Nigeria. Ann. Sci. Technol. 1(1). 8–12.
9. Carvalho, I.T., Santos, L. (2016). Antibiotics in the aquatic environments: A review of the European scenario. Environ. Int. 94. 736–757. doi: 10.1016/j.envint.2016.06.025.
10. Cassini, Alessandro Strauss, Reinhild et al. (2015). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. The Lancet Infectious Diseases, Volume 19, Issue 1, 56 - 66
11. D’Costa, V.M., King C.E., Kalan. L., Morar, M., Sung, W.W., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne R., Golding, G.B, Poinar, H.N., Wright, G.D. (2011). Antibiotic resistance is ancient. Nature. 477(7365). 457–461.
12. Demyanenko, D., Vashchyk, Y., & Fotina, T. (2021). Bacterial contamination of chicken food egg with automated and manual sorting and packaging. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 23(104), 36-40. https://doi.org/10.32718/nvlvet10406
13. Dougnon, T.V., Déguénon, E., Fah, L., Lègba, B., Hounmanou, Y.M.G., Agbankpè J., Amadou A., Koudokpon H., Fabiyi K., Aniambossou A., Assogba P., Hounsa E., de Souza M., Avlessi F., Dougnon T.J., Gbaguidi F., Boko M., Bankolé, H.S., Baba-Moussa L. (2017). Traditional treatment of human and animal salmonelloses in Southern Benin:Knowledge of farmers and traditherapists. Vet. World. 10(6). 580–592.
14. Food Safety (2020). https://food.ec.europa.eu/system/files/2020-12/fw_eu-platform_20201210_flw_pres_01.pdf
15. Fotina, T. I., & Sergeychik, T. V. (2022). Monitoring of risk factors on farms to keep chicken broilers. Bulletin of Sumy National Agrarian University. The Series: Veterinary Medicine, (1 (56), 31-36. https://doi.org/10.32845/bsnau.vet.2022.1.5
16. Fotina, T., Petrov, R., Shkromada, O., Nechyporenko, O., & Fotin, O. (2022). Quality of broiler chicken meat with the addition of chelated compounds of microelements to the diet. Ukrainian Journal of Veterinary Sciences, 13(2), 63-70. DOI: 10.31548/ujvs.13(2).2022.63-70.
17. Furtula, V., Farrell, E.G., Diarrassouba, F., Rempel, H., Pritchard, J., Diarra, M.S. (2010). Veterinary pharmaceuticals and antibiotic resistance of Escherichia coli isolates in poultry litter from commercial farms and controlled feeding trials. Poult. Sci. 89:180–188. doi: 10.3382/ps.2009-00198.
18. Kasianenko, O.I., Kasianenko, S.M., Paliy, A.P., Petrov, R.V., Kambur, M.D., Zamaziy, A.A., Livoshchenko, L.P., Livoshchenko, Ye.M., Nazarenko, S.M., Klishchova, Zh.E., Palii, A.P. (2020). Application of mannan oligosaccaharides (Alltech Inc.) in waterfowl: optimal dose and effectiveness. Ukrainian Journal of Ecology, 10(3), 63-68. doi: 10.15421/2020_134
19. Kytaieva, D., & Petrov, R. (2020). The use of probiotics in the cultivation of turkeys. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(100), 23-27. https://doi.org/10.32718/nvlvet10004
20. Mensah, S.E.P, Koudandé, O.D, Sanders, P, Laurentie, M, Mensah, G.A, Abiola, F.A. (2014). Antibiotics Residues and animal-source food in Africa:Risks for public health. Rev. Sci. Tech. 33(3). 975–986.
21. Nechyporenko, O., Berezovskyy, A., Fotina, T., & Petrov, R. (2020). Determination of the cumulative and skinresorptive action of the Zoodizin disinfectant. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(97), 26-30. https://doi.org/10.32718/nvlvet9705
22. OECD/FAO (2020), OECD-FAO Agricultural Outlook 2020-2029, OECD Publishing, Paris/FAO, Rome, https://doi.org/10.1787/1112c23b-en.
23. Opredelytel bakteryi Berdzhy [Bergey's manual of systematic bacteriology] 99-e yzd. V 2 t.: Per. s anhl. /Pod red. Dzh.Khoulta, N.Kryha, P.Snyta, Dzh.Steily, S.Uyliamsa. M.: Myr, 1997 444s.
24. Paliy, A.P., Gujvinska, S.O., Kalashnyk, M.V., Ivleva, O.V., Petrov, R.V., Baidevliatov, Yu.A., Baidevliatova, Yu.V., Husiev, V.O., Hilko, S.M., Kiralhazi, I.I., Lohvynenko, M.V., Palii, A.P., Bakun, Yu.Yu. (2020). Development of technical regulations for the capsulated probiotic manufacture . Ukrainian Journal of Ecology, 10(5), 170-176, doi: 10.15421/2020_226
25. Sajid, A, Kashif, N, Kifayat, N, Ahmad, S. (2016). Detection of antibiotic residues in poultry meat. Pak J Pharm Sci. 29. 1691–1694.
26. Sessou, P., Yaovi, A.B., Yovo, M., Gamedjo, J., Dossa F., Aguidissou, N.O, Boko, C.K., Alitonou G., Farougou S., Sohounhloue D. (2018). Phytochemistry and antibacterial activity of plants extracts compared with two commercial antibiotics against E coli responsible for avian colibacillosis in Benin. Int. J. Phytomed. 10(3). 168–174.
27. Shkromada, O., Fotina, T., Petrov, R., Nagorna, L., Bordun, O., Barun, M., Babenko, O., Karpulenko, M., Tsarenko, T., & Solomon, V. (2021). Development of a method of protection of concrete floors of animal buildings from corrosion at the expense of using dry disinfectants. Eastern-European Journal of Enterprise Technologies, 4(6(112), 33–40. https://doi.org/10.15587/1729-4061.2021.236977
28. Tasho, R.P., Cho, J.Y. (2016). Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Sci. Total Environ. 563–564:366–376. doi: 10.1016/j.scitotenv.2016.04.140.
29. Van Boeckel, T.P., Brower, C., Gilbert, M., Grenfell, B.T., Levin, S.A., Robinson, T.P., Teillant, A., Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proc Natl Acad Sci. 112(18). 5649–5654.
30. Wychodnik, K., Gałęzowska, G., Rogowska, J., Potrykus, M., Plenis, A., & Wolska, L. (2020). Poultry Farms as a Potential Source of Environmental Pollution by Pharmaceuticals. Molecules (Basel, Switzerland), 25(5), 1031. https://doi.org/10.3390/molecules25051031